1
|
Brittain WDG, Lloyd CM, Cobb SL. Synthesis of complex unnatural fluorine-containing amino acids. J Fluor Chem 2020; 239:109630. [PMID: 33144742 PMCID: PMC7583769 DOI: 10.1016/j.jfluchem.2020.109630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The area of fluorinated amino acid synthesis has seen rapid growth over the past decade. As reports of singly fluorinated natural amino acid derivatives have grown, researchers have turned their attention to develop methodology to access complex proteinogenic examples. A variety of reaction conditions have been employed in this area, exploiting new advances in the wider synthetic community such as photocatalysis and palladium cross-coupling. In addition, novel fluorinated functional groups have also been incorporated into amino acids, with SFX and perfluoro moieties now appearing with more frequency in the literature. This review focuses on synthetic methodology for accessing complex non-proteinogenic amino acids, along with amino acids containing multiple fluorine atoms such as CF3, SF5 and perfluoroaromatic groups.
Collapse
Affiliation(s)
| | - Carissa M Lloyd
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
3
|
Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Approaches to Obtaining Fluorinated α-Amino Acids. Chem Rev 2019; 119:10718-10801. [PMID: 31436087 DOI: 10.1021/acs.chemrev.9b00024] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorine does not belong to the pool of chemical elements that nature uses to build organic matter. However, chemists have exploited the unique properties of fluorine and produced countless fluoro-organic compounds without which our everyday lives would be unimaginable. The incorporation of fluorine into amino acids established a completely new class of amino acids and their properties, and those of the biopolymers constructed from them are extremely interesting. Increasing interest in this class of amino acids caused the demand for robust and stereoselective synthetic protocols that enable straightforward access to these building blocks. Herein, we present a comprehensive account of the literature in this field going back to 1995. We place special emphasis on a particular fluorination strategy. The four main sections describe fluorinated versions of alkyl, cyclic, aromatic amino acids, and also nickel-complexes to access them. We progress by one carbon unit increments. Special cases of amino acids for which there is no natural counterpart are described at the end of each section. Synthetic access to each of the amino acids is summarized in form of a table at the end of this article with the aim to make the information easily accessible to the reader.
Collapse
Affiliation(s)
- Johann Moschner
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Valentina Stulberg
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rita Fernandes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Susanne Huhmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jakob Leppkes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
4
|
Sim J, Campbell MW, Molander GA. Synthesis of α-Fluoro-α-Amino Acid Derivatives via Photoredox-Catalyzed Carbofluorination. ACS Catal 2019; 9:1558-1563. [PMID: 31588366 DOI: 10.1021/acscatal.8b04284] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A mild, metal-free, regioselective carbofluorination of dehydroalanine derivatives has been developed. Alkyl radicals resulting from visible-light photoredox catalysis engage in a radical conjugate addition to dehydroalanine, with subsequent fluorination of the newly generated radical to afford an α-fluoro-α-amino acid. By using a highly oxidizing organic photocatalyst, this process incorporates non-stabilized primary, secondary, and tertiary alkyl radicals derived from commercially available alkyltrifluoroborates to furnish a wide range of fluorinated unnatural amino acids.
Collapse
Affiliation(s)
- Jaehoon Sim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mark W. Campbell
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
5
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Miao Q, Li Y, Xu J, Lin A, Tanabe G, Muraoka O, Wu X, Xie W. First Total Syntheses of Amorfrutin C and pseudo-Amorfrutin A. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi Miao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| | - Yunzhi Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| | - Genzoh Tanabe
- Faculty of Pharmacy; Kinki University; 3-4-1 Kowakae 8502 Higashi-Osaka, Osaka 577- Japan
| | - Osamu Muraoka
- Faculty of Pharmacy; Kinki University; 3-4-1 Kowakae 8502 Higashi-Osaka, Osaka 577- Japan
| | - Xiaoming Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry; China Pharmaceutical University; 210009 Nanjing China
| |
Collapse
|
7
|
Kondratov IS, Logvinenko IG, Tolmachova NA, Morev RN, Kliachyna MA, Clausen F, Daniliuc CG, Haufe G. Synthesis and physical chemical properties of 2-amino-4-(trifluoromethoxy)butanoic acid - a CF 3O-containing analogue of natural lipophilic amino acids. Org Biomol Chem 2018; 15:672-679. [PMID: 27976770 DOI: 10.1039/c6ob02436j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
2-Amino-2-(trifluoromethoxy)butanoic acid (O-trifluoromethyl homoserine) was synthesized as a racemate and in both enantiomeric forms. The measured pKa and log D values establish the compound as a promising analogue of natural aliphatic amino acids.
Collapse
Affiliation(s)
- Ivan S Kondratov
- Enamine Ltd, Chervonotkatska St 78, Kyiv, 02094, Ukraine. and Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Str. 1, Kyiv, 02660, Ukraine
| | - Ivan G Logvinenko
- Enamine Ltd, Chervonotkatska St 78, Kyiv, 02094, Ukraine. and Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Str. 1, Kyiv, 02660, Ukraine
| | - Nataliya A Tolmachova
- Enamine Ltd, Chervonotkatska St 78, Kyiv, 02094, Ukraine. and Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Str. 1, Kyiv, 02660, Ukraine
| | - Roman N Morev
- Enamine Ltd, Chervonotkatska St 78, Kyiv, 02094, Ukraine.
| | | | - Florian Clausen
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, Münster 48149, Germany.
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, Münster 48149, Germany.
| | - Günter Haufe
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, Münster 48149, Germany. and Cells-in-Motion Cluster of Excellence, Universität Münster, Waldeyerstraße 15, 48149 Münster, Germany
| |
Collapse
|
8
|
Tolmachova NA, Kondratov IS, Dolovanyuk VG, Pridma SO, Chernykh AV, Daniliuc CG, Haufe G. Synthesis of new fluorinated proline analogues from polyfluoroalkyl β-ketoacetals and ethyl isocyanoacetate. Chem Commun (Camb) 2018; 54:9683-9686. [DOI: 10.1039/c8cc05912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New straightforward synthetic approach to hitherto unknown cis-/trans-CF3-prolines and other 3-polyfluoroalkyl proline analogues.
Collapse
Affiliation(s)
| | - Ivan S. Kondratov
- Enamine Ltd
- Kyiv
- Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
| | - Violetta G. Dolovanyuk
- Institute of Bioorganic Chemistry and Petrochemistry
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | | | | | | | - Günter Haufe
- Organisch-Chemisches Institut
- Universität Münster
- Münster 48149
- Germany
- Cells-in-Motion Cluster of Excellence
| |
Collapse
|
9
|
Ulbrich D, Daniliuc CG, Haufe G. Halofluorination of N-protected α,β-dehydro-α-amino acid esters—A convenient synthesis of α-fluoro-α-amino acid derivatives. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|