1
|
Li K, Jiang H, Dong S, Li SL, Chen Z, Yin G. Nickel(II)/Lewis acid catalysed olefin hydroamination and hydroarylation under mild conditions. Org Biomol Chem 2024; 22:823-830. [PMID: 38174952 DOI: 10.1039/d3ob01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aniline derivatives are important nitrogen-containing compounds with wide applications in chemicals, pharmaceuticals and agrochemicals. In the work described herein, nickel(II)/Lewis acid (LA) catalysed olefin hydroamination with anilines was explored for use in aniline derivative syntheses. The Ni(II)/LA catalysis proceeded smoothly under mild conditions, whereas using Ni(OAc)2 alone, the catalyst was inactive. Remarkably, the Markovnikov addition type products were obtained when substituted styrenes were used as the olefin source, while the anti-Markovnikov addition type products were obtained when the electron-deficient olefins such as acrylonitrile and acrylates were used. The mechanistic studies revealed that hydroamination of the styrene derivates proceeded via the amino-Ni(II)/LA attacking the carbocation intermediate which was generated by the protonation of the olefin, whereas for acrylonitrile and acrylates, it proceeded by a direct amino-Ni(II)/LA attack on the olefin by nucleophilic addition. In addition, the hydroarylation product was generated by the Hofmann-Martius rearrangement of the hydroamination product.
Collapse
Affiliation(s)
- Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Shuangfeng Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Shuang-Long Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Nagtilak PJ, Mane MV, Prasad S, Cavallo L, Tantillo DJ, Kapur M. Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons. Chemistry 2023; 29:e202203055. [PMID: 36197081 DOI: 10.1002/chem.202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manoj V Mane
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnatak, 562112, India
| | - Supreeth Prasad
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Liao G, Mei F, Chen Z, Yin G. Lewis acid improved dioxygen activation by a non-heme iron(II) complex towards tryptophan 2,3-dioxygenase activity for olefin oxygenation. Dalton Trans 2022; 51:18024-18032. [PMID: 36373374 DOI: 10.1039/d2dt02769k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dioxygen activation and catalysis around ambient temperature is a long-standing challenge in chemistry. Inspired by the significant roles of the hydrogen bond network in dioxygen activation and catalysis by redox enzymes, this work presents a Lewis acid improved dioxygen activation by an FeII(BPMEN)(OTf)2 complex towards tryptophan 2,3-dioxygenase (TDO) activity for 3-methylindole and common olefinic CC bond oxygenation and cleavage (enzymatic Brønsted acid vs. chemical Lewis acid). It was found that the presence of a Lewis acid such as Sc3+ could substantially improve olefinic CC bond oxygenation and cleavage activity through FeII(BPMEN)(OTf)2 catalyzed dioxygen activation. Notably, a more negative ρ value in the Hammett plot of para-substituted styrene oxygenations was observed in the presence of a stronger Lewis acid, disclosing the enhanced electrophilic oxygenation capability of the putative iron(III) superoxo species through its electrostatic interaction with a stronger Lewis acid. Thereof, this work has demonstrated a new strategy in catalyst design for dioxygen activation and catalysis for olefin oxygenation, a significant process in the chemical industry.
Collapse
Affiliation(s)
- Guangjian Liao
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fuming Mei
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
4
|
Fan C, Li R, Duan J, Xu K, Liu Y, Wang D, He X. Meldrum's acid-induced and FeCl 3-catalyzed one-pot domino reactions for construction of bis(indolyl)methanes. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2076245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, People’s Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Ministry of Education, Anhui Normal University, Wuhu, People’s Republic of China
| |
Collapse
|
5
|
Zeng M, Jiang H, Li K, Chen Z, Yin G. Palladium(II)/Lewis Acid-Catalyzed Olefination of Arylacetamides with Dioxygen. J Org Chem 2022; 87:4524-4537. [PMID: 35306815 DOI: 10.1021/acs.joc.1c02783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work introduces Pd(II)/LA-catalyzed (LA: Lewis acid) olefination of arylacetamides with dioxygen as the oxidant source. This protocol tolerates with different functional groups on the substrates, and the catalytic efficiency is highly Lewis acidity-dependent on added LA, that is, a stronger LA provided a better promotional effect. The 1H NMR studies of the semireaction between the arylacetamide and the Pd(II)/Sc(III) catalyst in HOAc-d4 disclosed the formation of a palladacycle intermediate, and the C-H activation step was reversible, which led to the formation of the deuterated arylacetamide substrate and the palladacycle intermediate. Further semireaction between the palladacycle intermediate and the olefin disclosed that it was a clean and much faster reaction than the C-H activation step, thus revealing multiple mechanistic information for Pd(II)-catalyzed C-H activation.
Collapse
Affiliation(s)
- Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Tan C, Jiang H, Zeng M, Li K, Chen Z, Yin G. Pd(II)/Lewis acid catalyzed regioselective olefination of indole with dioxygen. Org Biomol Chem 2022; 20:1425-1435. [PMID: 35080233 DOI: 10.1039/d2ob00006g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transition metal ion catalyzed indole olefination through C-H activation is a convenient protocol to synthesize versatile bioactive vinylindole compounds; however, in most cases, stoichiometric amounts of oxidants were necessary to accomplish the catalytic cycle. The present study describes a Pd(II)/LA (LA: Lewis acid) catalyzed indole olefination with dioxygen as the sole oxidant. The olefination reaction with electron-rich olefins proceeded smoothly through the pyrrolyl N-carboxamide group directed remote C-H activation at the C3 position of the indole with the Pd(II)/LA catalyst, whereas Pd(II) alone was a very sluggish catalyst under identical conditions. For the electron-deficient olefins, the directing N-carboxamide group was not essential for olefination with this Pd(II)/LA catalyst, demonstrating a different olefination pathway from that of electron-rich olefins. Remarkably, 1H NMR kinetics disclosed that olefination proceeded much faster with electron-rich olefins than with electron-deficient ones.
Collapse
Affiliation(s)
- Chen Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Decarboxylative Addition of Propiolic Acids with Indoles to Synthesize Bis(indolyl)methane Derivatives with a Pd(II)/LA Catalyst. J Org Chem 2021; 86:8333-8350. [PMID: 34056902 DOI: 10.1021/acs.joc.1c00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exploring new protocols for efficient organic synthesis is crucial for pharmaceutical developments. The present work introduces a Pd(II)/LA-catalyzed (LA: Lewis acid) decarboxylative addition reaction for the synthesis of bis(indolyl)methane derivatives. The presence of Lewis acid such as Sc(OTf)3 triggered Pd(II)-catalyzed decarboxylative addition of propiolic acids with indoles to offer the bis(indolyl)methane derivatives in moderate to good yields, whereas neither Pd(II) nor Lewis acid alone was active for this synthesis. The catalytic efficiency of Pd(OAc)2 was highly dependent on the Lewis acidity of the added Lewis acid, that is, a stronger Lewis acid provided a higher yield of the bis(indolyl)methane derivatives. Meanwhile, this Pd(II)/LA-catalyzed decarboxylative addition reaction showed good tolerance toward versatile electron-rich or -deficient substituents on the indole skeleton and on the benzyl ring of propiolic acids. The studies on the in situ 1H NMR kinetics of this Pd(II)/Sc(III) catalysis disclosed the formation of a transient vinyl-Pd(II)/Sc(III) intermediate generated by the pyrrole addition to the alkynyl-Pd(II)/Sc(III) species after decarboxylation, which was scarcely observed before.
Collapse
|
8
|
Zhang D, Yang D, Wang S, Zeng L, Xin J, Zhang H, Lei A. The Real Structure of Pd(
OAc
)
2
in Various Solvents
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dongchao Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Jie Xin
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
9
|
Guo S, Chen J, Yi M, Dong L, Lin A, Yao H. An approach to unsymmetrical 3,3′-diindolylmethanes through Pd-catalyzed cascade Heck cyclization of allenamides and o-ethynylanilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01539c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly efficient synthesis of unsymmetrical 3,3′-diindolylmethanes has been developed by palladium-catalyzed cascade Heck/cyclization reaction.
Collapse
Affiliation(s)
- Songjin Guo
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Jiayi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Mingjun Yi
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Liuli Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
10
|
Zeng M, Lou C, Xue J, Jiang H, Li K, Chen Z, Fu S, Yin G. Palladium (II)‐catalyzed homogeneous alcohol oxidations: Disclosing the crucial contribution of palladium nanoparticles in catalysis. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Zeng
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Chenlin Lou
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Jing‐Wen Xue
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Shitao Fu
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
11
|
Wang YJ, Yuan CH, Chu DZ, Jiao L. Regiocontrol in the oxidative Heck reaction of indole by ligand-enabled switch of the regioselectivity-determining step. Chem Sci 2020; 11:11042-11054. [PMID: 34094351 PMCID: PMC8162380 DOI: 10.1039/d0sc02246b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/13/2020] [Indexed: 11/22/2022] Open
Abstract
Efficient control of regioselectivity is a key concern in transition-metal-catalyzed direct C-H functionalization reactions. Various strategies for regiocontrol have been established by tuning the selectivity of the C-H activation step as a common mode. Herein, we present our study on an alternative mode of regiocontrol, in which the selectivity of the C-H activation step is no longer a key concern. We found that, in a reaction where the C-H activation step exhibits a different regio-preference from the subsequent functionalization step, a ligand-enabled switch of the regioselectivity-determining step could provide efficient regiocontrol. This mode has been exemplified by the Pd(ii)-catalyzed aerobic oxidative Heck reaction of indoles, in which a ligand-controlled C3-/C2-selectivity was achieved for the first time by the development of sulfoxide-2-hydroxypyridine (SOHP) ligands.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - De-Zhao Chu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| |
Collapse
|
12
|
Xue JW, Zeng M, Jiang H, Li K, Chen Z, Yin G. Palladium(II)/Lewis Acid-Catalyzed Oxidative Olefination/Annulation of N-Methoxybenzamides: Identifying the Active Intermediates through NMR Characterizations. J Org Chem 2020; 85:8760-8772. [PMID: 32589028 DOI: 10.1021/acs.joc.9b03484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Pd(II)-catalyzed C-H activation in arenes has been widely successful in organic synthesis with many palladacycle compounds isolated as the intermediates in ligand-directed C-H activation, direct identification of the reaction intermediates such as the π-complex prior to the C-H activation is still not successful because of their instability. In the present study, we introduce a Pd(II)/LA (LA: Lewis acid)-catalyzed oxidative olefination/annulation reaction between N-methoxybenzamides and acrylates with oxygen as the oxidant source, in which two intermediates, including an unsymmetrical η6-complex and a palladacycle species without the proton releasing to the environment, were identified through NMR characterizations. The in situ formation of the heterobimetallic Pd(II)/LA species such as Pd(II)/Sc(III) may have enhanced the electrophilic properties of the Pd2+ cation, thus improving the stability of the π-complex, herein, an unsymmetrical η6-complex, and improving its catalytic efficiency. The observed insensitive electronic effect preferred the concerted metalation-deprotonation (CMD) mechanism for this C-H activation, and the detected palladacycle intermediate without the proton releasing to the environment offered an experimental clue to support the proposed CMD mechanism.
Collapse
Affiliation(s)
- Jing-Wen Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hongwu Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
13
|
Liu S, Zhao F, Chen X, Deng G, Huang H. Aerobic Oxidative Functionalization of Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000285] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering Hunan City University Yiyang 413000 Hunan People's Republic of China
| | - Feng Zhao
- Key Laboratory for Antibody-based Drug and Intelligent Delivery System of Hunan Province Key Laboratory of Dong Medicine of Hunan Province School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
14
|
Wang J, Ling B, Liu P, Liu Y, Jiang YY, Bi S. Density Functional Theory Study on the Mechanism of Iridium-Catalyzed Benzylamine ortho C-H Alkenylation with Ethyl Acrylate. ACS OMEGA 2020; 5:15446-15453. [PMID: 32637819 PMCID: PMC7331057 DOI: 10.1021/acsomega.0c01587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/02/2020] [Indexed: 05/02/2023]
Abstract
Iridium-catalyzed oxidative o-alkenylation of benzylamines with acrylates was enabled by the directing group pentafluorobenzoyl (PFB). Density functional theory calculations were performed to explore the detailed reaction mechanism. The calculated results reveal that N-deprotonation prior to C-H activation is favored over direct C-H activation. Moreover, C-H activation is reversible and not the rate-determining step, which has been supported by the experimental observation. The regio- and stereoselectivity of ethyl acrylate insertion are controlled by the steric effect and the carbon atom with a larger orbital coefficient of the π* antibonding orbital in the nucleophilic attack, respectively. The migratory insertion of ethyl acrylate is computationally found to be rate-determining for the whole catalytic cycle. Finally, the seven-membered ring intermediate IM11 undergoes a sequential N-protonation and β-H elimination with the assistance of AcOH, rather than β-H elimination and reductive elimination proposed experimentally, to afford the o-alkenylated product. IM11 is unable to directly cyclize through C-N reductive elimination because both sp3-hybridized N and C atoms are unfavorable for N-C reductive elimination. The origin of the directing group PFB preventing the product and intermediates undergoing aza-Michael addition has been explained.
Collapse
|
15
|
|
16
|
Jeon J, Ryu H, Lee C, Cho D, Baik MH, Hong S. Site-Selective 1,1-Difunctionalization of Unactivated Alkenes Enabled by Cationic Palladium Catalysis. J Am Chem Soc 2019; 141:10048-10059. [DOI: 10.1021/jacs.9b04142] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jinwon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Ho Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Dasol Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| |
Collapse
|
17
|
Lewis acid promoted double bond migration in O-allyl to Z-products by Ru-H complexes. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Xue JW, Zeng M, Zhang S, Chen Z, Yin G. Lewis Acid Promoted Aerobic Oxidative Coupling of Thiols with Phosphonates by Simple Nickel(II) Catalyst: Substrate Scope and Mechanistic Studies. J Org Chem 2019; 84:4179-4190. [DOI: 10.1021/acs.joc.9b00194] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing-Wen Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Sicheng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
19
|
Abstract
An electrochemical bisindolylation of ethers was developed. Carried out under ambient conditions and in the absence of any chemical oxidants, this reaction exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Ke-Si Du
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , China
| |
Collapse
|
20
|
Żyła-Karwowska M, Moshniaha L, Zhylitskaya H, Stępień M. Pd-Induced Double C–H Bond Activation in Annulative Syntheses of Bipyrrole Boomerangs: Mechanistic Insights from NMR Spectroscopy and Computation. J Org Chem 2018; 83:5199-5209. [DOI: 10.1021/acs.joc.8b00630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marika Żyła-Karwowska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Liliia Moshniaha
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
21
|
Non-redox metal ions accelerated oxygen atom transfer by Mn-Me3tacn complex with H2O2 as oxygen resource. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Chantarojsiri T, Ziller JW, Yang JY. Incorporation of redox-inactive cations promotes iron catalyzed aerobic C-H oxidation at mild potentials. Chem Sci 2018; 9:2567-2574. [PMID: 29732136 PMCID: PMC5911827 DOI: 10.1039/c7sc04486k] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
The synthesis and characterization of the Schiff base complexes Fe(ii) (2M) and Fe(iii)Cl (3M), where M is a K+ or Ba2+ ion incorporated into the ligand, are reported. The Fe(iii/ii) redox potentials are positively shifted by 440 mV (2K) and 640 mV (2Ba) compared to Fe(salen) (salen = N,N'-bis(salicylidene)ethylenediamine), and by 70 mV (3K) and 230 mV (3Ba) compared to Fe(Cl)(salen), which is likely due to an electrostatic effect (electric field) from the cation. The catalytic activity of 3M towards the aerobic oxidation of allylic C-H bonds was explored. Prior studies on iron salen complexes modified through conventional electron-donating or withdrawing substituents found that only the most oxidizing derivatives were competent catalysts. In contrast, the 3M complexes, which are significantly less oxidizing, are both active. Mechanistic studies comparing 3M to Fe(salen) derivatives indicate that the proximal cation contributes to the overall reactivity in the rate determining step. The cationic charge also inhibits oxidative deactivation through formation of the corresponding Fe2-μ-oxo complexes, which were isolated and characterized. This study demonstrates how non-redox active Lewis acidic cations in the secondary coordination sphere can be used to modify redox catalysts in order to operate at milder potentials with a minimal impact on the reactivity, an effect that was unattainable by tuning the catalyst through traditional substituent effects on the ligand.
Collapse
Affiliation(s)
| | - Joseph W Ziller
- Department of Chemistry , University of California , Irvine , 92697 , USA .
| | - Jenny Y Yang
- Department of Chemistry , University of California , Irvine , 92697 , USA .
| |
Collapse
|
23
|
Affiliation(s)
- Ignacio Funes-Ardoiz
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Catalonia, Spain
| | - Feliu Maseras
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Catalonia, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
24
|
Gholamhosseyni M, Kianmehr E. A ruthenium-catalyzed alkenylation–annulation approach for the synthesis of indazole derivatives via C–H bond activation. Org Biomol Chem 2018; 16:5973-5978. [DOI: 10.1039/c8ob00999f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new approach to indazole derivatives through a Ru(ii)-catalyzed C–H activation–annulation reaction, which proceeds via C–C and C–N bond forming reactions, is reported.
Collapse
Affiliation(s)
| | - Ebrahim Kianmehr
- School of Chemistry
- College of science
- University of Tehran
- Tehran 1417614411
- Iran
| |
Collapse
|
25
|
Xue JW, Zeng M, Hou X, Chen Z, Yin G. Catalytic Oxidation of Alkynes into 1,2-Diketone Derivatives by Using a PdII
/Lewis-Acid Catalyst. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing-Wen Xue
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Xianfei Hou
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| |
Collapse
|
26
|
Transformation of Methyl Linoleate to its Conjugated Derivatives with Simple Pd(OAc)2/Lewis Acid Catalyst. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-3052-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Lv Z, Chen Z, Hu Y, Zheng W, Wang H, Mo W, Yin G. A General Strategy for Open-Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non-Redox Metal Salts. ChemCatChem 2017. [DOI: 10.1002/cctc.201700687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhanao Lv
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Yue Hu
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Wenrui Zheng
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Haibin Wang
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Wanling Mo
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering; Key laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| |
Collapse
|
28
|
Affiliation(s)
- Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino Via S. Agostino, 1. 62032 Camerino Italy
| |
Collapse
|
29
|
Promoting a non-heme manganese complex catalyzed oxygen transfer reaction by both lewis acid and Brønsted acid: Similarities and distinctions. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Senan AM, Zhang S, Zeng M, Chen Z, Yin G. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6912-6918. [PMID: 28719749 DOI: 10.1021/acs.jafc.7b02017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu2+, and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.
Collapse
Affiliation(s)
- Ahmed M Senan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology , Wuhan 430074, PR China
| | - Sicheng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology , Wuhan 430074, PR China
| | - Miao Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology , Wuhan 430074, PR China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology , Wuhan 430074, PR China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology , Wuhan 430074, PR China
| |
Collapse
|
31
|
Davies DL, Macgregor SA, McMullin CL. Computational Studies of Carboxylate-Assisted C-H Activation and Functionalization at Group 8-10 Transition Metal Centers. Chem Rev 2017; 117:8649-8709. [PMID: 28530807 DOI: 10.1021/acs.chemrev.6b00839] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Computational studies on carboxylate-assisted C-H activation and functionalization at group 8-10 transition metal centers are reviewed. This Review is organized by metal and will cover work published from late 2009 until mid-2016. A brief overview of computational work prior to 2010 is also provided, and this outlines the understanding of carboxylate-assisted C-H activation in terms of the "ambiphilic metal-ligand assistance" (AMLA) and "concerted metalation deprotonation" (CMD) concepts. Computational studies are then surveyed in terms of the nature of the C-H bond being activated (C(sp2)-H or C(sp3)-H), the nature of the process involved (intramolecular with a directing group or intermolecular), and the context (stoichiometric C-H activation or within a variety of catalytic processes). This Review aims to emphasize the connection between computation and experiment and to highlight the contribution of computational chemistry to our understanding of catalytic C-H functionalization based on carboxylate-assisted C-H activation. Some opportunities where the interplay between computation and experiment may contribute further to the areas of catalytic C-H functionalization and applied computational chemistry are identified.
Collapse
Affiliation(s)
- David L Davies
- Department of Chemistry, University of Leicester , Leicester LE1 7RH, United Kingdom
| | - Stuart A Macgregor
- Institute of Chemical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - Claire L McMullin
- Institute of Chemical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
32
|
Lv Z, Wang H, Chen Z, Zou S, Zhu S, Lou C, Yin G. Non-redox metal ions promoted dehydrogenation of saturated C–C bond by a ruthenium catalyst with dioxygen activation. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Wang D, Stahl SS. Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf) 2 and Discovery of Fe(OTf) 3 as a Highly Effective Cocatalyst. J Am Chem Soc 2017; 139:5704-5707. [PMID: 28399364 DOI: 10.1021/jacs.7b01970] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper salts find widespread use in Pd-catalyzed oxidation reactions, and they are typically used as oxidants or redox-active cocatalysts. Here, we probe the origin of a dramatic acceleration effect of Cu(OTf)2 in the C-H/C-H aerobic oxidative coupling of o-xylene. NMR spectroscopic analysis of the PdII catalyst in the presence of Cu(OTf)2, together with other experimental and DFT computational studies of the catalytic reaction, show that Cu(OTf)2 activates the PdII catalyst for C-H activation via a non-redox pathway and has negligible impact on catalyst reoxidation. These observations led to the testing of other metal triflate salts as cocatalysts, the results of which show that Fe(OTf)3 is even more effective than Cu(OTf)2.
Collapse
Affiliation(s)
- Dian Wang
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Zhang S, Xu H, Lou C, Senan AM, Chen Z, Yin G. Efficient Bimetallic Catalysis of Nitrile Hydration to Amides with a Simple Pd(OAc)2
/Lewis Acid Catalyst at Ambient Temperature. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601495] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sicheng Zhang
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| | - Haosheng Xu
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| | - Chenlin Lou
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| | - Ahmed M. Senan
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering; Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology); Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Huazhong University of Science and Technology; 430074 Wuhan P. R. China
| |
Collapse
|
35
|
Reath AH, Ziller JW, Tsay C, Ryan AJ, Yang JY. Redox Potential and Electronic Structure Effects of Proximal Nonredox Active Cations in Cobalt Schiff Base Complexes. Inorg Chem 2017; 56:3713-3718. [DOI: 10.1021/acs.inorgchem.6b03098] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexander H. Reath
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Charlene Tsay
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Austin J. Ryan
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Non-redox metal ions promoted oxidative dehydrogenation of saturated C C bond by simple Pd(OAc)2 catalyst. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Hetero-Diels-Alder approach to Bis(indolyl)methanes. Bioorg Med Chem 2017; 25:1122-1131. [DOI: 10.1016/j.bmc.2016.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
|
38
|
Zhang J, Yang H, Sun T, Chen Z, Yin G. Nonredox Metal-Ions-Enhanced Dioxygen Activation by Oxidovanadium(IV) Complexes toward Hydrogen Atom Abstraction. Inorg Chem 2017; 56:834-844. [DOI: 10.1021/acs.inorgchem.6b02277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Hang Yang
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Tingting Sun
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering,
Key Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, and Hubei Key Laboratory of Material Chemistry
and Service Failure, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|