1
|
Zhang Y, Zhang ZQ, Du Y, Nie JH, Wang Y, Cui BD, Mou XQ, Zhou MQ, Chen YZ. Photomediated One-Pot Three-Component Approach Enables the Formal Direct N-Acylation/Sulfonylation and α-C-H Functionalization of 1,2,3,4-Tetrahydroisoquinoline. J Org Chem 2024; 89:11513-11524. [PMID: 39051980 DOI: 10.1021/acs.joc.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
N-Acyl/sulfonyl-α-functionalized 1,2,3,4-tetrahydroisoquinolines (THIQs) are significant structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot three-component strategy to access N-acyl/sulfonyl-α-functionalized THIQs. This method features the use of oxygen (from air) as the green oxidant, high atom and step economy, and decent structural diversity. The synthetic applicability of the method was further demonstrated via the facile construction of valuable bioactive molecules. Mechanistic studies indicated that oxidation with singlet oxygen and the acceptor-less dehydrogenation were involved in the photoredox process.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Zheng-Qian Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yao Du
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Jia-Huan Nie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Ming-Qiang Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
2
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
3
|
Mandrekar KS, Tilve SG. P 4O 10/TfOH mediated domino condensation-cyclization of amines with diacids: a route to indolizidine alkaloids under catalyst- and solvent-free conditions. RSC Adv 2022; 12:17701-17705. [PMID: 35765320 PMCID: PMC9200442 DOI: 10.1039/d2ra02534e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
A domino condensation–cyclization method is developed to synthesize indolizidine alkaloids using a P4O10/TfOH reagent system without the employment of either a catalyst or solvent. The use of a few aliphatic and aromatic dicarboxylic acids is shown along with various primary amines. This method is suitable for synthesizing pyrrolo[2,1-a]isoquinolines, pyrido[2,1-a]isoquinolines, and isoindolo[1,2-a]isoquinolinones in excellent yields. When phthalic acid is used, a workup with either NaBH4 or a saturated NaHCO3 solution provided 12b-H or 12b-OH isoindolo[1,2-a]isoquinolinones, respectively. A highly efficient and direct methodology for the construction of pyrrolo[2,1-a]isoquinoline, pyrido[2,1-a]isoquinoline, and 12b-H and 12b-OH isoindolo[2,1-a]isoquinolinone alkaloids from commercially available synthons is devised.![]()
Collapse
Affiliation(s)
- Ketan S Mandrekar
- School of Chemical Sciences, Goa University Taleigao Goa 403206 India
| | - Santosh G Tilve
- School of Chemical Sciences, Goa University Taleigao Goa 403206 India
| |
Collapse
|
4
|
Abstract
Chemical transformations that rapidly and efficiently construct a high level of molecular complexity in a single step are perhaps the most valuable in total synthesis. Among such transformations is the transition metal catalyzed [2 + 2 + 2] cycloisomerization reaction, which forges three new C-C bonds and one or more rings in a single synthetic operation. We report here a strategy that leverages this transformation to open de novo access to the Veratrum family of alkaloids. The highly convergent approach described herein includes (i) the enantioselective synthesis of a diyne fragment containing the steroidal A/B rings, (ii) the asymmetric synthesis of a propargyl-substituted piperidinone (F ring) unit, (iii) the high-yielding union of the above fragments, and (iv) the intramolecular [2 + 2 + 2] cycloisomerization reaction of the resulting carbon framework to construct in a single step the remaining three rings (C/D/E) of the hexacyclic cevanine skeleton. Efficient late-stage maneuvers culminated in the first total synthesis of heilonine (1), achieved in 21 steps starting from ethyl vinyl ketone.
Collapse
Affiliation(s)
- Kyle J. Cassaidy
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Mohan C, Krishna RB, Sivanandan ST, Ibnusaud I. Synthesis of Pyrrolo[2,1‐
a
]isoquinoline Class of Natural Product Crispine A. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chithra Mohan
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam 686560 India
- School of Chemical Sciences Mahatma Gandhi University Kottayam 686560 India
| | - R. Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam 686560 India
| | | | - Ibrahim Ibnusaud
- Institute for Integrated Programmes and Research in Basic Sciences Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
6
|
Ansari A, Gorde AB, Ramapanicker R. Asymmetric synthesis of six tetrahydroisoquinoline natural products through α-amination of an aldehyde. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
|
8
|
Yu H, Kim H, Baek SH, Lee D. Direct and Efficient C(sp 3)-H Functionalization of N-Acyl/Sulfonyl Tetrahydroisoquinolines (THIQs) With Electron-Rich Nucleophiles via 2,3-Dichloro-5,6-Dicyano-1,4-Benzoquinone (DDQ) Oxidation. Front Chem 2020; 8:629. [PMID: 32850649 PMCID: PMC7403605 DOI: 10.3389/fchem.2020.00629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/17/2020] [Indexed: 11/25/2022] Open
Abstract
A highly efficient metal-free oxidative direct C(sp3)–H functionalization of N-acyl/sulfonyl 1,2,3,4-tetrahydroisoquinolines (THIQs) with a wide range of electron-rich nucleophiles was accomplished under mild conditions through oxidation with DDQ and subsequent trapping of the resulting reactive and stable N-acyl/sulfonyl iminium ions. The synthetic utility of this method was illustrated by a concise and efficient total synthesis of (±)-benzo[a]quinolizidine (10) in 3 steps from the known N-Cbz 1,2,3,4-THIQ 4b.
Collapse
Affiliation(s)
- Heesun Yu
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, Suwon, South Korea
| | - Hyoungsu Kim
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, Suwon, South Korea
| | - Seung-Hoon Baek
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, Suwon, South Korea
| | - Dongjoo Lee
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, Suwon, South Korea
| |
Collapse
|
9
|
Puerto Galvis CE, Kouznetsov VV. Biomimetic Total Synthesis of Dysoxylum Alkaloids. J Org Chem 2019; 84:15294-15308. [PMID: 31689360 DOI: 10.1021/acs.joc.9b02093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A five-step total synthesis of Dysoxylum alkaloids has been achieved using a biomimetic approach from zanthoxylamide protoalkaloids. The synthesis featured a direct amidation and a Bischler-Napieralski reaction to form the dihydroisoquinoline ring, which was then subjected to a Noyori asymmetric transfer hydrogenation to establish the stereogenic center at C-1. Our synthetic sequence provides an important perspective on the biosynthetic origin of Dysoxylum alkaloids, since 6 natural alkaloids and 12 synthetic analogues were obtained with high enantioselectivity and in overall yields up to 68%. In addition, we describe the acute toxicity toward zebrafish embryos of Dysoxylum alkaloids, comparing their toxicity with that of their corresponding zanthoxylamide protoalkaloids and establishing an enantioselectivity-toxicity relationship.
Collapse
Affiliation(s)
- Carlos E Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN , Universidad Industrial de Santander , Parque Tecnológico Guatiguará, Km 2 Vía Refugio , Piedecuesta 681011 , Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN , Universidad Industrial de Santander , Parque Tecnológico Guatiguará, Km 2 Vía Refugio , Piedecuesta 681011 , Colombia
| |
Collapse
|
10
|
Talk RA, El-Tunsi A, Robertson CC, Coldham I. Regioselective Lithiation and Electrophilic Quenching of N
-Boc-3-phenyltetrahydroisoquinoline. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ruaa A. Talk
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Ashraf El-Tunsi
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Craig C. Robertson
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| | - Iain Coldham
- Department of Chemistry; University of Sheffield; Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
11
|
Achary R, Kim S, Choi Y, Mathi GR, Kim HJ, Hwang JY, Kim P. Succinct Syntheses of Methopholine, (±)‐Homolaudanosine, and (±)‐Dysoxyline via Metal‐free One‐Pot Double Alkylation on 1‐Methyl‐3,4‐dihydroisoquinolines. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghavendra Achary
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Seulgi Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of ChemistryChungnam National University Daejeon 34134 South Korea
| | - Yuri Choi
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Gangadhar Rao Mathi
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Hyun Jin Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
| | - Jong Yeon Hwang
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| | - Pilho Kim
- Therapeutics and Biotechnology DivisionKorea Research Institute of Chemical Technology Daejeon 34114 South Korea
- Department of Medicinal Chemistry and PharmacologyUniversity of Science and Technology Daejeon 34113 South Korea
| |
Collapse
|
12
|
Aeyad T, Jones CG, Coldham I. Preparation of Substituted Tetrahydro-1-benzazepines by Lithiation-Trapping. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tahani Aeyad
- Department of Chemistry; University of Sheffield; Brook Hill 7HF Sheffield S3 UK
| | - Callum G. Jones
- Department of Chemistry; University of Sheffield; Brook Hill 7HF Sheffield S3 UK
| | - Iain Coldham
- Department of Chemistry; University of Sheffield; Brook Hill 7HF Sheffield S3 UK
| |
Collapse
|
13
|
Carter N, Li X, Reavey L, Meijer AJHM, Coldham I. Synthesis and kinetic resolution of substituted tetrahydroquinolines by lithiation then electrophilic quench. Chem Sci 2018; 9:1352-1357. [PMID: 29675183 PMCID: PMC5887238 DOI: 10.1039/c7sc04435f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Treatment of N-Boc-2-aryl-1,2,3,4-tetrahydroquinolines with n-butyllithium in THF at -78 °C resulted in efficient lithiation at the 2-position and the organolithiums were trapped with a variety of electrophiles to give substituted products. Variable temperature NMR spectroscopy gave kinetic data that showed that the rate of tert-butoxycarbonyl (Boc) rotation was fast (ΔG‡ ≈ 45 kJ mol-1 at -78 °C) and in situ ReactIR spectroscopy showed fast lithiation at -78 °C. By carrying out the lithiation in the presence of the chiral ligand sparteine, kinetic resolutions with very high levels of enantioselectivity were achieved. The resulting enantioenriched N-Boc-2-aryltetrahydroquinolines were converted to 2,2-disubstituted products without significant loss in enantiopurity. Most electrophiles add at the 2-position and the chemistry provides a way to access tetrahydroquinolines that are fully substituted alpha to the nitrogen atom. Notably, either enantiomer of the 2,2-disubstituted tetrahydroquinolines can be obtained with high selectivity from the same enantiomer of the chiral ligand. Unusually, when methyl cyanoformate was used as the electrophile, substitution occurred in the ortho position of the aryl ring attached at C-2. This change in regioselectivity on changing the electrophile was probed by deuterium isotope studies and by DFT calculations which suggested that the binding of the cyanoformate altered the structure of the intermediate organolithium. Secondary amine products can be prepared by removing the Boc group with acid or by inducing the Boc group to rearrange to the 2-position in the presence of triethylborane and this carbonyl N-to-C rearrangement occurs with retention of configuration from the intermediate enantiomerically enriched organolithium species.
Collapse
Affiliation(s)
- Nicholas Carter
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK .
| | - Xiabing Li
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK .
| | - Lewis Reavey
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK .
| | - Anthony J H M Meijer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK .
| | - Iain Coldham
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , S3 7HF , UK .
| |
Collapse
|
14
|
Oss G, de Vos SD, Luc KNH, Harper JB, Nguyen TV. Tropylium-Promoted Oxidative Functionalization of Tetrahydroisoquinolines. J Org Chem 2018; 83:1000-1010. [DOI: 10.1021/acs.joc.7b02584] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Giulia Oss
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Sander D. de Vos
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Kevin N. H. Luc
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Jason B. Harper
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Thanh V. Nguyen
- School of Chemistry, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Reddy YV, Biradar DO, Reddy BJM, Rathod A, Himabindu M, Reddya BVS. Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids Using Ellman's Chiral Auxiliary. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chiral t-butylsulfinamide has been successfully employed for the stereoselective synthesis of 1-benzyl tetrahydroisoquinoline alkaloids. This is the first report on the synthesis of chiral 1-benzyltetrahydroisoquinoline natural products using tert-butylsulfinamide through a haloamide cyclization.
Collapse
Affiliation(s)
- Y. Vikram Reddy
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Dhanraj O. Biradar
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | - Aravinda Rathod
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - M. Himabindu
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - B. V. Subba Reddya
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| |
Collapse
|