1
|
Thiede J, Schneeberger T, Iacovache I, Langenegger SM, Zuber B, Häner R. Supramolecular assembly of phenanthrene-DNA conjugates into light-harvesting nanospheres. NEW J CHEM 2024; 48:15731-15734. [PMID: 39234596 PMCID: PMC11367589 DOI: 10.1039/d4nj02411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
The self-assembly of highly functionalized phenanthrene-DNA conjugates into supramolecular nanostructures is presented. DNA oligomers modified with phenanthrene residues at the 3'-end and internal positions self-assemble into spherical nanostructures. The nanospheres exhibit light-harvesting properties. Upon irradiation of phenanthrene, the excitation energy is transferred along phenanthrene units, resulting in phenanthrene-pyrene exciplex formation.
Collapse
Affiliation(s)
- Jan Thiede
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch
| | - Thomas Schneeberger
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern Baltzerstrasse 2 CH-3012 Bern Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch
| | - Benoît Zuber
- Institute of Anatomy, University of Bern Baltzerstrasse 2 CH-3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern Freiestrasse 3 CH-3012 Bern Switzerland https://www.haener.dcbp.unibe.ch
| |
Collapse
|
2
|
Mathew SS, Ahamed AAS, Abraham I, Prabhu DD, John F, George J. Self‐Assemblies of DNA ‐ Amphiphiles Nanostructures for New Design Strategies of Varied Morphologies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - A A Subuhan Ahamed
- School of Chemistry University of Hyderabad Hyderabad 500046 Telangana India
| | - Ignatious Abraham
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Deepak D Prabhu
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Franklin John
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| | - Jinu George
- Department of Chemistry Sacred Heart College (Autonomous) Thevara Kochi Kerala India 682013
| |
Collapse
|
3
|
Fan S, Liu X, Yu S, Wang J, Li C, Cheng S, Hong M. Aptamer-functionalized fluorine-containing DNAsomes for targeted drug delivery to cancer cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A drug-loaded aptamer functionalized fluorine-containing DNAsome was reported here, which can deliver doxorubicin into cancer cells in a targeted manner through receptor mediated endocytosis and induce the apoptosis of cancer cells.
Collapse
Affiliation(s)
- Shuhua Fan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Xiaoyan Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Shuxian Yu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Chuan Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Shuang Cheng
- School of Agriculture, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| |
Collapse
|
4
|
Harikrishnan KS, Krishnan N, Kumar NM, Krishna A, Raj G, Perumal D, Kalathil J, Krishna J, Varghese R. Galactose Grafted Two-Dimensional Nanosheets as a Scaffold for the In Situ Synthesis of Silver Nanoparticles: A Potential Catalyst for the Reduction of Nitroaromatics. Chemistry 2021; 27:14100-14107. [PMID: 34398494 DOI: 10.1002/chem.202102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 11/06/2022]
Abstract
Two major hurdles in NP-based catalysis are the aggregation of the NPs and their recycling. Immobilization of NPs onto a 2D support is the most promising strategy to overcome these difficulties. Herein, amphiphilicity-driven self-assembly of galactose-hexaphenylbenzene-based amphiphiles into galactose-decorated 2D nanosheet is reported. The extremely dense decoration of reducing sugar on the surface of the sheets is used for the in situ synthesis and immobilization of ultrafine catalytically active AgNPs by using Tollens' reaction. The potential of the system as a catalyst for the reduction of various nitroaromatics is demonstrated. Enhanced catalytic activity is observed for the immobilized AgNPs when compared to the corresponding discrete AgNPs. Recovery of the catalytic system from the reaction mixture by ultrafiltration and its subsequent recycling for several cycles without dropping its activity is shown. This is the first report demonstrating the in situ synthesis and immobilization of ultrafine AgNPs onto a 2D nanosheet that exhibits excellent catalytic performance for the reduction of nitroaromatics.
Collapse
Affiliation(s)
- Kaloor S Harikrishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Nilima Manoj Kumar
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Anusree Krishna
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Devanathan Perumal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Jemshiya Kalathil
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Jithu Krishna
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
5
|
Chandrasekharan SV, Krishnan N, Atchimnaidu S, Raj G, P. K. AK, Sagar S, Das S, Varghese R. Blue-emissive two-component supergelator with aggregation-induced enhanced emission. RSC Adv 2021; 11:19856-19863. [PMID: 35479242 PMCID: PMC9033671 DOI: 10.1039/d1ra03751j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Two-component organogels offer several advantages over one-component gels, but their design is highly challenging. Hence, it is extremely important to design new approaches for the crafting of two-component organogels with interesting optical and mechanical properties. Herein, we report the design of a new class of two-component supergelators obtained from the assembly between acid functionalized tetraphenylethylene (TPE)-based dendrons and alkylated melamine. No gelation behaviour is observed for the individual components, but interestingly, remarkable gelation behaviour is observed for their hydrogen-bonded complex. The primary driving force responsible for the gelation is the strong π–π stacking interaction of TPE units. Because of the strong π-stacking of TPEs in the gel state, the C(sp2)–C(sp2) bond rotation of the TPE segment is completely arrested in the gel state, which results in intense fluorescence emission of the gels. Furthermore, excellent elastic response is observed for the gels as evident from their high storage modulus compared to loss modulus values. Our results clearly demonstrate that by the appropriate selection of the molecular components, this approach can be applied for the creation of functional nanomaterials with emergent properties absent in the individual blocks. Design of a novel class of two-component, highly emissive, low molecular weight supergelator is reported.![]()
Collapse
Affiliation(s)
| | - Nithiyanandan Krishnan
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Siriki Atchimnaidu
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Gowtham Raj
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Anusree Krishna P. K.
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Soumya Sagar
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Suresh Das
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| | - Reji Varghese
- School of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Thiruvananthapuram
- India
| |
Collapse
|
6
|
Helmers I, Shen B, Kartha KK, Albuquerque RQ, Lee M, Fernández G. Impact of Positional Isomerism on Pathway Complexity in Aqueous Media. Angew Chem Int Ed Engl 2020; 59:5675-5682. [PMID: 31849157 PMCID: PMC7154731 DOI: 10.1002/anie.201911531] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Indexed: 11/11/2022]
Abstract
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self-assembly. We compare the self-assembly of two carboxyl-functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2-position enables efficient pairwise H-bonding interactions into a single thermodynamic species, whereas meso-substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self-assembly.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Bowen Shen
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Kalathil K. Kartha
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
7
|
Helmers I, Shen B, Kartha KK, Albuquerque RQ, Lee M, Fernández G. Impact of Positional Isomerism on Pathway Complexity in Aqueous Media. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Bowen Shen
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Kalathil K. Kartha
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Rodrigo Q. Albuquerque
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Myongsoo Lee
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Gustavo Fernández
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
8
|
Helmers I, Bäumer N, Fernández G. Hydrophobic domain flexibility enables morphology control of amphiphilic systems in aqueous media. Chem Commun (Camb) 2020; 56:13808-13811. [DOI: 10.1039/d0cc06173e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, we unravel the impact of hydrophobic domain flexibility on the self-assembly pathways and aggregate morphology of amphiphilic systems in aqueous media.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Nils Bäumer
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
9
|
Role of hydrophobicity in tuning the intracellular uptake of dendron-based fluorophores for in vitro metal ion sensing. Colloids Surf B Biointerfaces 2019; 179:180-189. [PMID: 30959230 DOI: 10.1016/j.colsurfb.2019.03.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Fluorophores are used for sensing biologically relevant ions, toxic metals or pathogenic markers. However, the mode of entry of such fluorophores into the cell greatly depends on their size, shape, surface charge, functional groups, and hydrophobicity. In particular, the influence of hydrophobicity on the intracellular uptake of fluorophores is poorly investigated. Self-assembly is a recent strategy to tune the intracellular uptake of fluorophores, facilitating increased intracellular sensing and fluorescence. Herein, self-assembly of three novel poly(aryl ether) dendron derivatives that contain rhodamine units was used to investigate the effect of hydrophobicity on the intracellular uptake of self-assembled fluorophores. The results suggest that monomer hydrophobicity plays an important role in the uptake. The dendron-based fluorophores, which upon self-assembly, formed stable spherical aggregates ranging from 300 to 500 nm. The rhodamine-based dendrons could selectively sense Hg2+ ions in the presence of other competing metal cations. Intracellular imaging of the dendron-based fluorophores displayed bright red fluorescence in human embryonic kidney cells. The rate of intracellular uptake of the three dendron-based fluorophores was analyzed by flow cytometry. The results establish the importance of the hydrophilic-lipophilic balance of the self-assembled amphiphiles for tuning the intracellular uptake.
Collapse
|
10
|
Bösch CD, Jevric J, Bürki N, Probst M, Langenegger SM, Häner R. Supramolecular Assembly of DNA-Phenanthrene Conjugates into Vesicles with Light-Harvesting Properties. Bioconjug Chem 2018; 29:1505-1509. [DOI: 10.1021/acs.bioconjchem.8b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Caroline D. Bösch
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jovana Jevric
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Nutcha Bürki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Markus Probst
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
Albert SK, Golla M, Thelu HVP, Krishnan N, Varghese R. A pH-Responsive DNAsome from the Self-Assembly of DNA-Phenyleneethynylene Hybrid Amphiphile. Chemistry 2017; 23:8348-8352. [PMID: 28489295 DOI: 10.1002/chem.201701446] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/18/2022]
Abstract
A pH-responsive DNAsome derived from the amphiphilicity-driven self-assembly of DNA amphiphile containing C-rich DNA sequence is reported. The acidification of DNAsome induces a structural change of C-rich DNA from random coil to an i-motif structure that triggers the disassembly of DNAsome and its subsequent morphological transformation into an open entangled network. The encapsulation of a hydrophobic guest into the membrane of DNAsome and its pH-triggered release upon acidification of DNAsome is also demonstrated.
Collapse
Affiliation(s)
- Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Murali Golla
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Hari Veera Prasad Thelu
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-, 695016, India
| |
Collapse
|
12
|
Albert SK, Thelu HVP, Golla M, Krishnan N, Varghese R. Modular synthesis of supramolecular DNA amphiphiles through host-guest interactions and their self-assembly into DNA-decorated nanovesicles. NANOSCALE 2017; 9:5425-5432. [PMID: 28300237 DOI: 10.1039/c6nr08370f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA nanostructures have found potential applications in various fields including nanotechnology, materials science and nanomedicine, hence the design and synthesis of DNA nanostructures is extremely important. Self-assembly of DNA amphiphiles provides an efficient strategy for the crafting of soft DNA nanostructures. However, the synthesis of DNA amphiphiles is always challenging. Herein, we show a non-covalent approach based on the host-guest interaction between β-CD and adamantane for the synthesis of DNA amphiphiles, and report their amphiphilicity-driven self-assembly into DNA decorated vesicles. The DNA-directed surface addressability of the vesicles is demonstrated through their surface decoration with Au-NPs through DNA hybridization. Our results suggest that the non-covalent approach represents a simple, efficient and universal method for the synthesis of DNA amphiphiles, and provides an excellent strategy for the creation of smart DNA nanostructures.
Collapse
Affiliation(s)
- Shine K Albert
- School of Chemistry, Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM), CET campus, Trivandrum-695016, India.
| | | | | | | | | |
Collapse
|
13
|
Yu H, Alexander DTL, Aschauer U, Häner R. Synthesis of Responsive Two-Dimensional Polymers via Self-Assembled DNA Networks. Angew Chem Int Ed Engl 2017; 56:5040-5044. [PMID: 28370933 DOI: 10.1002/anie.201701342] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Indexed: 11/08/2022]
Abstract
Despite a growing interest in two-dimensional polymers, their rational synthesis remains a challenge. The solution-phase synthesis of a two-dimensional polymer is reported. A DNA-based monomer self-assembles into a supramolecular network, which is further converted into the covalently linked two-dimensional polymer by anthracene dimerization. The polymers appear as uniform monolayers, as shown by AFM and TEM imaging. Furthermore, they exhibit a pronounced solvent responsivity. The results demonstrate the value of DNA-controlled self-assembly for the formation of two-dimensional polymers in solution.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Duncan T L Alexander
- Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015, Lausanne, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
14
|
Yu H, Alexander DTL, Aschauer U, Häner R. Synthesis of Responsive Two-Dimensional Polymers via Self-Assembled DNA Networks. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao Yu
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Duncan T. L. Alexander
- Interdisciplinary Centre for Electron Microscopy (CIME); Ecole Polytechnique Fédérale de Lausanne (EPFL); Station 12 1015 Lausanne Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
15
|
Thelu HVP, Albert SK, Golla M, Krishnan N, Yamijala SB, Nair SV, Srinivasula SM, Varghese R. DNA-Decorated Luminescent Vesicles as Drug Carriers. ChemistrySelect 2016. [DOI: 10.1002/slct.201600897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hari Veera Prasad Thelu
- School of Chemistry; Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM); CET campus Trivandrum- 695016 India
| | - Shine K. Albert
- School of Chemistry; Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM); CET campus Trivandrum- 695016 India
| | - Murali Golla
- School of Chemistry; Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM); CET campus Trivandrum- 695016 India
| | - Nithiyanandan Krishnan
- School of Chemistry; Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM); CET campus Trivandrum- 695016 India
| | | | | | | | - Reji Varghese
- School of Chemistry; Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM); CET campus Trivandrum- 695016 India
| |
Collapse
|