1
|
Madhanagopal BR, Talbot H, Rodriguez A, Louis JM, Zeghal H, Vangaveti S, Reddy K, Chandrasekaran AR. The unusual structural properties and potential biological relevance of switchback DNA. Nat Commun 2024; 15:6636. [PMID: 39107287 PMCID: PMC11303717 DOI: 10.1038/s41467-024-50348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Synthetic DNA motifs form the basis of nucleic acid nanotechnology. The biochemical and biophysical properties of these motifs determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.
Collapse
Affiliation(s)
| | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Jiss Maria Louis
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Hana Zeghal
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
2
|
Madhanagopal BR, Talbot H, Rodriguez A, Louis JM, Zeghal H, Vangaveti S, Reddy K, Chandrasekaran AR. The unusual structural properties and potential biological relevance of switchback DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.15.563609. [PMID: 38014227 PMCID: PMC10680705 DOI: 10.1101/2023.11.15.563609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Synthetic DNA motifs form the basis of nucleic acid nanotechnology, and their biochemical and biophysical properties determine their applications. Here, we present a detailed characterization of switchback DNA, a globally left-handed structure composed of two parallel DNA strands. Compared to a conventional duplex, switchback DNA shows lower thermodynamic stability and requires higher magnesium concentration for assembly but exhibits enhanced biostability against some nucleases. Strand competition and strand displacement experiments show that component sequences have an absolute preference for duplex complements instead of their switchback partners. Further, we hypothesize a potential role for switchback DNA as an alternate structure in sequences containing short tandem repeats. Together with small molecule binding experiments and cell studies, our results open new avenues for switchback DNA in biology and nanotechnology.
Collapse
Affiliation(s)
| | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Jiss Maria Louis
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Hana Zeghal
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | | |
Collapse
|
3
|
Nasiri M, Bahadorani M, Dellinger K, Aravamudhan S, Vivero-Escoto JL, Zadegan R. Improving DNA nanostructure stability: A review of the biomedical applications and approaches. Int J Biol Macromol 2024; 260:129495. [PMID: 38228209 PMCID: PMC11060068 DOI: 10.1016/j.ijbiomac.2024.129495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.
Collapse
Affiliation(s)
- Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, USA.
| |
Collapse
|
4
|
Sampedro Vallina N, McRae EKS, Geary C, Andersen ES. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204651. [PMID: 36526605 DOI: 10.1002/smll.202204651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/15/2022] [Indexed: 05/28/2023]
Abstract
RNA nanotechnology takes advantage of structural modularity to build self-assembling nano-architectures with applications in medicine and synthetic biology. The use of paranemic motifs, that form without unfolding existing secondary structure, allows for the creation of RNA nanostructures that are compatible with cotranscriptional folding in vitro and in vivo. In previous work, kissing-loop (KL) motifs have been widely used to design RNA nanostructures that fold cotranscriptionally. However, the paranemic crossover (PX) motif has not yet been explored for cotranscriptional RNA origami architectures and information about the structural geometry of the motif is unknown. Here, a six base pair-wide paranemic RNA interaction that arranges double helices in a perpendicular manner is introduced, allowing for the generation of a new and versatile building block: the paranemic-crossover triangle (PXT). The PXT is self-assembled by cotranscriptional folding and characterized by cryogenic electron microscopy, revealing for the first time an RNA PX interaction in high structural detail. The PXT is used as a building block for the construction of multimers that form filaments and rings and a duplicated PXT motif is used as a building block to self-assemble cubic structures, demonstrating the PXT as a rigid self-folding domain for the development of wireframe RNA origami architectures.
Collapse
Affiliation(s)
- Néstor Sampedro Vallina
- Interdisciplinary Nanoscience Center (iNANO); Gustav Wieds Vej 14, Aarhus University, Aarhus, DK-8000, Denmark
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO); Gustav Wieds Vej 14, Aarhus University, Aarhus, DK-8000, Denmark
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO); Gustav Wieds Vej 14, Aarhus University, Aarhus, DK-8000, Denmark
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO); Gustav Wieds Vej 14, Aarhus University, Aarhus, DK-8000, Denmark
| |
Collapse
|
5
|
Lee JY, Yang Q, Chang X, Wisniewski H, Olivera TR, Saji M, Kim S, Perumal D, Zhang F. Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications. J Mater Chem B 2022; 10:7460-7472. [PMID: 35912570 DOI: 10.1039/d2tb00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Suchan Kim
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Narayanan RP, Abraham L. Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Curr Top Med Chem 2022; 22:668-685. [PMID: 35023457 DOI: 10.2174/1568026622666220112143401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the 'tile' based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.
Collapse
Affiliation(s)
- Raghu Pradeep Narayanan
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| | - Leeza Abraham
- Centre for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe-85281, USA
| |
Collapse
|
7
|
Chandrasekaran AR, Vilcapoma J, Dey P, Wong-Deyrup SW, Dey BK, Halvorsen K. Exceptional Nuclease Resistance of Paranemic Crossover (PX) DNA and Crossover-Dependent Biostability of DNA Motifs. J Am Chem Soc 2020; 142:6814-6821. [PMID: 32208657 DOI: 10.1021/jacs.0c02211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanometer-sized features and molecular recognition properties make DNA a useful material for nanoscale construction, but degradation in biological fluids poses a considerable roadblock to biomedical applications of DNA nanotechnology. Here, we report the remarkable biostability of a multistranded motif called paranemic crossover (PX) DNA. Compared to double stranded DNA, PX DNA has dramatically enhanced (sometimes >1000 fold) resistance to degradation by four different nucleases, bovine and human serum, and human urine. We trace the cause of PX's biostability to DNA crossovers, showing a continuum of protection that scales with the number of crossovers. These results suggest that enhanced biostability can be engineered into DNA nanostructures by adopting PX-based architectures or by strategic crossover placement.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Paromita Dey
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Siu Wah Wong-Deyrup
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Bijan K Dey
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
8
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
9
|
Kizer M, Huntress ID, Walcott BD, Fraser K, Bystroff C, Wang X. Complex between a Multicrossover DNA Nanostructure, PX-DNA, and T7 Endonuclease I. Biochemistry 2019; 58:1332-1342. [PMID: 30794750 DOI: 10.1021/acs.biochem.9b00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paranemic crossover DNA (PX-DNA) is a four-stranded multicrossover structure that has been implicated in recombination-independent recognition of homology. Although existing evidence has suggested that PX is the DNA motif in homologous pairing (HP), this conclusion remains ambiguous. Further investigation is needed but will require development of new tools. Here, we report characterization of the complex between PX-DNA and T7 endonuclease I (T7endoI), a junction-resolving protein that could serve as the prototype of an anti-PX ligand (a critical prerequisite for the future development of such tools). Specifically, nuclease-inactive T7endoI was produced and its ability to bind to PX-DNA was analyzed using a gel retardation assay. The molar ratio of PX to T7endoI was determined using gel electrophoresis and confirmed by the Hill equation. Hydroxyl radical footprinting of T7endoI on PX-DNA is used to verify the positive interaction between PX and T7endoI and to provide insight into the binding region. Cleavage of PX-DNA by wild-type T7endoI produces DNA fragments, which were used to identify the interacting sites on PX for T7endoI and led to a computational model of their interaction. Altogether, this study has identified a stable complex of PX-DNA and T7endoI and lays the foundation for engineering an anti-PX ligand, which can potentially assist in the study of molecular mechanisms for HP at an advanced level.
Collapse
Affiliation(s)
- Megan Kizer
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ian D Huntress
- Programs of Bioinformatics and Molecular Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Benjamin D Walcott
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Christopher Bystroff
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xing Wang
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
10
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
11
|
Suo Z, Chen J, Hu Z, Liu Y, Xing F, Feng L. Recent Advances in Novel DNA Guiding Nanofabrication and Nanotechnology. NANOFABRICATION 2018. [DOI: 10.1515/nanofab-2018-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
DNA as life’s genetic material has been widely investigated around the world. In recent years, with the fiery researches on nanomaterials, it also plays an important role in the development of material science due to its extraordinary molecular recognition capability and prominent structural features. In this mini review, we mainly overview the recent progresses of DNA guiding self-assembled nanostructures and nanofabrication. Typical DNA tile-based assembly and DNA origami nanotechnologies are presented, utilizing the recent 3D topology methods to fabricate multidimensional structures with unique properties. Then the site-specific nanomaterials synthesis and nano-DNA recognition on different DNA scaffolds/templates are demonstrated with excellent addressability, biocompatibility and structural programmability. Various nanomaterials, such as metals, carbon family materials, quantum dots, metal-organic frameworks, and DNA-based liquid crystals are briefly summarized. Finally, the present limitation and future promising development directions are discussed in conclusion and perspective. We wish this review would provide useful information toward the broader scientific interests in DNA nanotechnology.
Collapse
|
12
|
Wang X, Chandrasekaran AR, Shen Z, Ohayon YP, Wang T, Kizer ME, Sha R, Mao C, Yan H, Zhang X, Liao S, Ding B, Chakraborty B, Jonoska N, Niu D, Gu H, Chao J, Gao X, Li Y, Ciengshin T, Seeman NC. Paranemic Crossover DNA: There and Back Again. Chem Rev 2018; 119:6273-6289. [PMID: 29911864 DOI: 10.1021/acs.chemrev.8b00207] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX2, has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.
Collapse
Affiliation(s)
- Xing Wang
- Department of Chemistry and Chemical Biology and The Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | | | - Zhiyong Shen
- College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241000 , China
| | - Yoel P Ohayon
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Tong Wang
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Megan E Kizer
- Department of Chemistry and Chemical Biology and The Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ruojie Sha
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Chengde Mao
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Hao Yan
- Department of Chemistry and Biochemistry and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Xiaoping Zhang
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Shiping Liao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Baoquan Ding
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Banani Chakraborty
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Natasha Jonoska
- Department of Mathematics and Statistics , University of South Florida , Tampa , Florida 33620 , United States
| | - Dong Niu
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Hongzhou Gu
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Jie Chao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Xiang Gao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Yuhang Li
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Tanashaya Ciengshin
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Nadrian C Seeman
- Department of Chemistry , New York University , New York , New York 10012 , United States
| |
Collapse
|
13
|
Wang X, Lai W, Man T, Qu X, Li L, Chandrasekaran AR, Pei H. Bio-surface engineering with DNA scaffolds for theranostic applications. NANOFABRICATION 2018. [DOI: 10.1515/nanofab-2018-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Biosensor design is important to bioanalysis yet challenged by the restricted target accessibility at the biomolecule-surface (bio-surface). The last two decades have witnessed the appearance of various “art-like” DNA nanostructures in one, two, or three dimensions, and DNA nanostructures have attracted tremendous attention for applications in diagnosis and therapy due to their unique properties (e.g., mechanical flexibility, programmable control over their shape and size, easy and high-yield preparation, precise spatial addressability and biocompatibility). DNA nanotechnology is capable of providing an effective approach to control the surface functionality, thereby increasing the molecular recognition ability at the biosurface. Herein, we present a critical review of recent progress in the development of DNA nanostructures in one, two and three dimensions and highlight their biological applications including diagnostics and therapeutics. We hope that this review provides a guideline for bio-surface engineering with DNA nanostructures.
Collapse
|
14
|
Shen W, Liu Q, Ding B, Zhu C, Shen Z, Seeman NC. Facilitation of DNA self-assembly by relieving the torsional strains between building blocks. Org Biomol Chem 2018; 15:465-469. [PMID: 27924995 DOI: 10.1039/c6ob02281b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paranemic crossover (PX) DNA motifs were designed and used for self-assembly of two dimensional lattices. The PX motifs tested include overwound and underwound ones, and different forms of self-assembled two-dimensional (2D) lattices were generated, demonstrating the correlation between the helical torsional strain within the system and the quality of the lattice formed. Relief of the torsional strain by adjusting the number of base pairs in the JX region adjacent to the PX motifs, facilitates and optimizes DNA self-assembly, which leads to 2D lattices of greater uniformity and higher yield. This study demonstrated that the helical relationship among DNA building blocks is a critical factor for the tile-based self-assembly of large nanostructures.
Collapse
Affiliation(s)
- Weili Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Qing Liu
- National Center for NanoScience and Technology, ZhongGuanCun, Beijing 100190, China
| | - Baoquan Ding
- National Center for NanoScience and Technology, ZhongGuanCun, Beijing 100190, China
| | - Changqing Zhu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Zhiyong Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York 10003, USA.
| |
Collapse
|