1
|
Zheng K, Liang C, Chen H, Zhao Y, Wang Z, Cheng J. I 2 Catalyzed and TBHP/Ammonium-Promoted Conversion of Arylethanone to Nitriles via β-Scission of Iminyl Radicals. Org Lett 2024; 26:3935-3939. [PMID: 38668726 DOI: 10.1021/acs.orglett.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Herein, we report a general I2-catalyzed and TBHP/ammonium-promoted conversion of arylethanone to aromatic nitriles under air. This procedure proceeded with the β-scission of iminyl radical, which was facilitated via quenching the released alkyl radical by tert-butyl peroxyl radical leading to peroxide followed with Kornblum-DeLaMare rearrangement. A series of aryl methyl ketone and alkyl aryl ketone worked well with good functional group tolerance in high yields. As such, this metal-free procedure represents a facile, safe, green, and practical procedure in conversion of arylethanone to aromatic nitriles.
Collapse
Affiliation(s)
- Kui Zheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Chen Liang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hailong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yang Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhenlian Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiang Cheng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
2
|
Zhang G, Zhang C, Tian Y, Chen F. Fe-Catalyzed Direct Synthesis of Nitriles from Carboxylic Acids with Electron-Deficient N-Cyano- N-aryl-arylsulfonamide. Org Lett 2023; 25:917-922. [PMID: 36730786 DOI: 10.1021/acs.orglett.2c04185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Established carboxylic acids to nitriles conversion methods suffer from expensive catalysts, tedious steps, high temperatures (>200 °C), high pressure, or a narrow substrate range. Herein, we demonstrate a concise and efficient access to diverse nitrile compounds from ubiquitous carboxylic acids with electron-deficient N-cyano-N-aryl-arylsulfonamide (NCAS) in moderate to excellent yields. This strategy is promoted by an inexpensive iron catalyst and is generally compatible with primary, secondary, tertiary, and aryl carboxylic acids, as well as a variety of functional groups.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Ye Tian
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, China
| |
Collapse
|
3
|
Pan L, Fu W, Zhang L, Wang S, Tang T. Highly dispersed Co species in N-doped carbon enhanced the aldehydes ammoxidation reaction activity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zheng Y, Liu W, Ren Y, Guo Y, Tian X. Copper‐Catalyzed Cleavage of Aryl C(OH)−C Bonds to Access Aryl Nitriles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Yinggang Guo
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
5
|
Liu W, Tang P, Zheng Y, Ren YL, Tian X, An W, Zheng X, Guo Y, Shen Z. Cu 2 O-Catalyzed Conversion of Benzyl Alcohols Into Aromatic Nitriles via the Complete Cleavage of the C≡N Triple Bond in the Cyanide Anion. Chem Asian J 2021; 16:3509-3513. [PMID: 34523819 DOI: 10.1002/asia.202100776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Nitrogen transfer from cyanide anion to an aldehyde is emerging as a promising method for the synthesis of aromatic nitriles. However, this method still suffers from a disadvantage that a use of stoichiometric Cu(II) or Cu(I) salts is required to enable the reaction. As we report herein, we overcame this drawback and developed a catalytic method for nitrogen transfer from cyanide anion to an alcohol via the complete cleavage of the C≡N triple bond using phen/Cu2 O as the catalyst. The present condition allowed a series of benzyl alcohols to be smoothly converted into aromatic nitriles in moderate to high yields. In addition, the present method could be extended to the conversion of cinnamic alcohol to 3-phenylacrylonitrile.
Collapse
Affiliation(s)
- Wenbo Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Peichen Tang
- School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, P.R. China
| | - Yi Zheng
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Yun-Lai Ren
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Xinzhe Tian
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Wankai An
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Xianfu Zheng
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Yinggang Guo
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| | - Zhenpeng Shen
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China) (Y.-L. Ren) (X. Z. Tian) (X. F. Zheng
| |
Collapse
|
6
|
Zhao C, Yang S, Cheng Y, Qu R, Huang X, Liu H. Mechanistic Insight into Pd(II)-Catalyzed Late-Stage Nondirected C(sp 2)-H Cyanation of Toluene Using the Dual Ligands MPAA and Quinoxaline: A Density Functional Theory Investigation. J Org Chem 2021; 86:10526-10535. [PMID: 34279941 DOI: 10.1021/acs.joc.1c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) calculations were performed to investigate the mechanism of Pd(II)-catalyzed late-stage nondirected C(sp2)-H cyanation of toluene. We confirmed the resting state and catalytic active species of this stoichiometric reaction, and we calculated the full catalytic cycle to obtain a favorable reaction pathway. The DFT calculation results indicate that the morphology of the active species is essential for the observed concerted metalation/deprotonation step. Although C-H activation is reversible in principle, it is the regioselectivity- or product-determining step. Our calculation results show that the regioselectivity is not only influenced by the electron effects but also by the potential steric repulsion interactions between the substrates and the specific geometry of the catalyst. Interestingly, the transmetalation process involves the largest overall change in free energy; thus, transmetalation is defined as the rate-determining step and turnover-determining step.
Collapse
Affiliation(s)
- Chaoyu Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Siwei Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Yaxuan Cheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Ruxin Qu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| | - Huiling Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Liutiao Road, Changchun 130023, China
| |
Collapse
|
7
|
Chandra P, Choudhary N, Lahiri GK, Maiti D, Mobin SM. Copper Mediated Chemo‐ and Stereoselective Cyanation Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| | - Neha Choudhary
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| | - Goutam K. Lahiri
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Mumbai Powai 400076 India
| | - Shaikh M. Mobin
- Department of Chemistry Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
- Department of Metallurgy Engineering and Materials Science (MEMS) Indian Institute of Technology Indore Khandwa Road Indore Simrol 453552 India
- Department of Biosciences and Bio-Medical Engineering (BSBE) Indian Institute of Technology, Indore Khandwa Road Indore Simrol 453552 India
| |
Collapse
|
8
|
Xing AP, Shen Z, Zhao Z, Tian X, Ren YL. CuO-catalyzed conversion of arylacetic acids into aromatic nitriles with K4Fe(CN)6 as the nitrogen source. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Kumar Ghosh M, Roy B, Sarkar D. Regioselective C(sp
2
)−C(sp
3
) Oxidative Bond Cleavage of 1‐(1‐Hydroxyalkyl) naphthalen‐2‐ols: First Synthesis of 1‐Azido‐halo‐naphthalene‐2(1
H
)‐ones. Isr J Chem 2020. [DOI: 10.1002/ijch.202000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Barnali Roy
- National Institute of Technology Rourkela Odisha 769008 India
| | - Debayan Sarkar
- National Institute of Technology Rourkela Odisha 769008 India
| |
Collapse
|
10
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|