1
|
Milisavljevic M, Rodriguez TR, Tyo KEJ. Elucidating sequence-function relationships in a template-independent polymerase to enable novel DNA recording applications. Biotechnol Bioeng 2024; 121:3808-3821. [PMID: 39275897 DOI: 10.1002/bit.28838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024]
Abstract
Harnessing DNA as a high-density storage medium for information storage and molecular recording of signals has been of increasing interest in the biotechnology field. Recently, progress in enzymatic DNA synthesis, DNA digital data storage, and DNA-based molecular recording has been made by leveraging the activity of the template-independent DNA polymerase, terminal deoxynucleotidyl transferase (TdT). TdT adds deoxyribonucleotides to the 3' end of single-stranded DNA, generating random sequences of single-stranded DNA. TdT can use several divalent cations for its enzymatic activity and exhibits shifts in deoxyribonucleotide incorporation frequencies in response to changes in its reaction environment. However, there is limited understanding of sequence-structure-function relationships regarding these properties, which in turn limits our ability to modulate TdT to further advance TdT-based tools. Most TdT literature to-date explores the activity of murine, bovine or human TdTs; studies probing TdT sequence and structure largely focus on strictly conserved residues that are functionally critical to TdT activity. Here, we explore non-conserved TdT sequence space by surveying the natural diversity of TdT. We characterize a diverse set of TdT homologs from different organisms and identify several TdT residues/regions that confer differences in TdT behavior between homologs. The observations in this study can design rules for targeted TdT libraries, in tandem with a screening assay, to modulate TdT properties. Moreover, the data can be useful in guiding further studies of potential residues of interest. Overall, we characterize TdTs that have not been previously studied in the literature, and we provide new insights into TdT sequence-function relationships.
Collapse
Affiliation(s)
- Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Teresa Rojas Rodriguez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Ukladov EO, Tyugashev TE, Kuznetsov NA. Computational Modeling Study of the Molecular Basis of dNTP Selectivity in Human Terminal Deoxynucleotidyltransferase. Biomolecules 2024; 14:961. [PMID: 39199349 PMCID: PMC11352444 DOI: 10.3390/biom14080961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP. This study involved molecular dynamics to simulate a potential impact of amino acid substitutions on the enzyme's selectivity toward dNTPs. It was found that the formation of stable hydrogen bonds between a nitrogenous base and amino acid residues at positions 395 and 456 is crucial for the preferences for dNTPs. A set of single-substitution and double-substitution mutants at these positions was analyzed by molecular dynamics simulations. The data revealed two TdT mutants-containing either substitution D395N or substitutions D395N+E456N-that possess substantially equalized selectivity toward various dNTPs as compared to the wild-type enzyme. These results will enable rational design of TdT-like enzymes with equalized dNTP selectivity for biotechnological applications.
Collapse
Affiliation(s)
- Egor O. Ukladov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.O.U.); (T.E.T.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.O.U.); (T.E.T.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (E.O.U.); (T.E.T.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
4
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
5
|
Pichon M, Levi-Acobas F, Kitoun C, Hollenstein M. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry 2024; 30:e202400137. [PMID: 38403849 DOI: 10.1002/chem.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Camélia Kitoun
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
6
|
Verardo D, Adelizzi B, Rodriguez-Pinzon DA, Moghaddam N, Thomée E, Loman T, Godron X, Horgan A. Multiplex enzymatic synthesis of DNA with single-base resolution. SCIENCE ADVANCES 2023; 9:eadi0263. [PMID: 37418522 PMCID: PMC10328407 DOI: 10.1126/sciadv.adi0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Enzymatic DNA synthesis (EDS) is a promising benchtop and user-friendly method of nucleic acid synthesis that, instead of solvents and phosphoramidites, uses mild aqueous conditions and enzymes. For applications such as protein engineering and spatial transcriptomics that require either oligo pools or arrays with high sequence diversity, the EDS method needs to be adapted and certain steps in the synthesis process spatially decoupled. Here, we have used a synthesis cycle comprising a first step of site-specific silicon microelectromechanical system inkjet dispensing of terminal deoxynucleotidyl transferase enzyme and 3' blocked nucleotide, and a second step of bulk slide washing to remove the 3' blocking group. By repeating the cycle on a substrate with an immobilized DNA primer, we show that microscale spatial control of nucleic acid sequence and length is possible, which, here, are assayed by hybridization and gel electrophoresis. This work is distinctive for enzymatically synthesizing DNA in a highly parallel manner with single base control.
Collapse
Affiliation(s)
| | | | | | | | | | - Tessa Loman
- DNA Script, 67 Avenue de Fontainebleau, 94270 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
7
|
Simmons BL, McDonald ND, Robinett NG. Assessment of enzymatically synthesized DNA for gene assembly. Front Bioeng Biotechnol 2023; 11:1208784. [PMID: 37476479 PMCID: PMC10354541 DOI: 10.3389/fbioe.2023.1208784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Phosphoramidite chemical DNA synthesis technology is utilized for creating de novo ssDNA building blocks and is widely used by commercial vendors. Recent advances in enzymatic DNA synthesis (EDS), including engineered enzymes and reversibly terminated nucleotides, bring EDS technology into competition with traditional chemical methods. In this short study, we evaluate oligos produced using a benchtop EDS instrument alongside chemically produced commercial oligonucleotides to assemble a synthetic gene encoding green fluorescent protein (GFP). While enzymatic synthesis produced lower concentrations of individual oligonucleotides, these were available in half the time of commercially produced oligonucleotides and were sufficient to assemble functional GFP sequences without producing hazardous organic chemical waste.
Collapse
Affiliation(s)
- Brooke L. Simmons
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Nathan D. McDonald
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
| | - Natalie G. Robinett
- U.S. Army Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Gunpowder, MD, United States
- Excet, Inc., Springfield, VA, United States
| |
Collapse
|
8
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
9
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
10
|
Hoose A, Vellacott R, Storch M, Freemont PS, Ryadnov MG. DNA synthesis technologies to close the gene writing gap. Nat Rev Chem 2023; 7:144-161. [PMID: 36714378 PMCID: PMC9869848 DOI: 10.1038/s41570-022-00456-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/24/2023]
Abstract
Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.
Collapse
Affiliation(s)
- Alex Hoose
- National Physical Laboratory, Teddington, Middlesex UK
| | | | - Marko Storch
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul S. Freemont
- London Biofoundry, Translation and Innovation Hub, Imperial College White City Campus, London, UK
- Section of Structural and Synthetic Biology, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
11
|
Sabat N, Katkevica D, Pajuste K, Flamme M, Stämpfli A, Katkevics M, Hanlon S, Bisagni S, Püntener K, Sladojevich F, Hollenstein M. Towards the controlled enzymatic synthesis of LNA containing oligonucleotides. Front Chem 2023; 11:1161462. [PMID: 37179777 PMCID: PMC10172484 DOI: 10.3389/fchem.2023.1161462] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic, de novo XNA synthesis represents an alternative method for the production of long oligonucleotides containing chemical modifications at distinct locations. While such an approach is currently developed for DNA, controlled enzymatic synthesis of XNA remains at a relative state of infancy. In order to protect the masking groups of 3'-O-modified LNA and DNA nucleotides against removal caused by phosphatase and esterase activities of polymerases, we report the synthesis and biochemical characterization of nucleotides equipped with ether and robust ester moieties. While the resulting ester-modified nucleotides appear to be poor substrates for polymerases, ether-blocked LNA and DNA nucleotides are readily incorporated into DNA. However, removal of the protecting groups and modest incorporation yields represent obstacles for LNA synthesis via this route. On the other hand, we have also shown that the template-independent RNA polymerase PUP represents a valid alternative to the TdT and we have also explored the possibility of using engineered DNA polymerases to increase substrate tolerance for such heavily modified nucleotide analogs.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
| | | | | | - Marie Flamme
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Development and Catalysis, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Paris, France
- *Correspondence: Marcel Hollenstein,
| |
Collapse
|
12
|
Wang G, He C, Zou J, Liu J, Du Y, Chen T. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2022; 11:4142-4155. [PMID: 36455255 DOI: 10.1021/acssynbio.2c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Development of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both in vitro and in vivo and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and de novo synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions. We also demonstrate the efficient TdT incorporation of dTPT3 derivatives with different functional linkers into oligonucleotides for orthogonal labeling of nucleic acids and applications thereof. The development of a method for the daily laboratory preparation of DNAs with UBPs at arbitrary sites with the assistance of TdT is also described.
Collapse
Affiliation(s)
- Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiayun Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Flamme M, Katkevica D, Pajuste K, Katkevics M, Sabat N, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Benzoyl and pivaloyl as efficient protecting groups for controlled enzymatic synthesis of DNA and XNA oligonucleotides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marie Flamme
- Institut Pasteur Structrual Biology and Chemistry FRANCE
| | - Dace Katkevica
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Nazarii Sabat
- Institut Pasteur Structural Biology and Chemistry FRANCE
| | - Steven Hanlon
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Irene Marzuoli
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Kurt Püntener
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | | | - Marcel Hollenstein
- Institut Pasteur Department of Structural Biology and Chemistry 28 Rue du Dr. Roux 75015 Paris FRANCE
| |
Collapse
|
14
|
Wang P, Mu Z, Sun L, Si S, Wang B. Hidden Addressing Encoding for DNA Storage. Front Bioeng Biotechnol 2022; 10:916615. [PMID: 35928958 PMCID: PMC9344065 DOI: 10.3389/fbioe.2022.916615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
DNA is a natural storage medium with the advantages of high storage density and long service life compared with traditional media. DNA storage can meet the current storage requirements for massive data. Owing to the limitations of the DNA storage technology, the data need to be converted into short DNA sequences for storage. However, in the process, a large amount of physical redundancy will be generated to index short DNA sequences. To reduce redundancy, this study proposes a DNA storage encoding scheme with hidden addressing. Using the improved fountain encoding scheme, the index replaces part of the data to realize hidden addresses, and then, a 10.1 MB file is encoded with the hidden addressing. First, the Dottup dot plot generator and the Jaccard similarity coefficient analyze the overall self-similarity of the encoding sequence index, and then the sequence fragments of GC content are used to verify the performance of this scheme. The final results show that the encoding scheme indexes with overall lower self-similarity, and the local thermodynamic properties of the sequence are better. The hidden addressing encoding scheme proposed can not only improve the utilization of bases but also ensure the correct rate of DNA storage during the sequencing and decoding processes.
Collapse
|
15
|
Ezekannagha C, Becker A, Heider D, Hattab G. Design considerations for advancing data storage with synthetic DNA for long-term archiving. Mater Today Bio 2022; 15:100306. [PMID: 35677811 PMCID: PMC9167972 DOI: 10.1016/j.mtbio.2022.100306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Deoxyribonucleic acid (DNA) is increasingly emerging as a serious medium for long-term archival data storage because of its remarkable high-capacity, high-storage-density characteristics and its lasting ability to store data for thousands of years. Various encoding algorithms are generally required to store digital information in DNA and to maintain data integrity. Indeed, since DNA is the information carrier, its performance under different processing and storage conditions significantly impacts the capabilities of the data storage system. Therefore, the design of a DNA storage system must meet specific design considerations to be less error-prone, robust and reliable. In this work, we summarize the general processes and technologies employed when using synthetic DNA as a storage medium. We also share the design considerations for sustainable engineering to include viability. We expect this work to provide insight into how sustainable design can be used to develop an efficient and robust synthetic DNA-based storage system for long-term archiving.
Collapse
Affiliation(s)
- Chisom Ezekannagha
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
- Corresponding author.
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
| | - Georges Hattab
- Department of Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, D-35043, Marburg, Germany
| |
Collapse
|
16
|
Lu X, Li J, Li C, Lou Q, Peng K, Cai B, Liu Y, Yao Y, Lu L, Tian Z, Ma H, Wang W, Cheng J, Guo X, Jiang H, Ma Y. Enzymatic DNA Synthesis by Engineering Terminal Deoxynucleotidyl Transferase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoyun Lu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shanxi 710072, China
- Zhonghe Gene Technology Co., Ltd., Tianjin 300308, China
| | - Jinlong Li
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Congyu Li
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin University of Science&Technology, Tianjin 300457, China
| | - Qianqian Lou
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kai Peng
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bijun Cai
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ying Liu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yonghong Yao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lina Lu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhenyang Tian
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shanxi 710072, China
| | - Jian Cheng
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaoxian Guo
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huifeng Jiang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
17
|
Schaudy E, Lietard J, Somoza MM. Sequence Preference and Initiator Promiscuity for De Novo DNA Synthesis by Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2021; 10:1750-1760. [PMID: 34156829 PMCID: PMC8291772 DOI: 10.1021/acssynbio.1c00142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The untemplated activity
of terminal deoxynucleotidyl transferase
(TdT) represents its most appealing feature. Its use is well established
in applications aiming for extension of a DNA initiator strand, but
a more recent focus points to its potential in enzymatic de
novo synthesis of DNA. Whereas its low substrate specificity
for nucleoside triphosphates has been studied extensively, here we
interrogate how the activity of TdT is modulated by the nature of
the initiating strands, in particular their length, chemistry, and
nucleotide composition. Investigation of full permutational libraries
of mono- to pentamers of d-DNA, l-DNA, and 2′O-methyl-RNA
of differing directionality immobilized to glass surfaces, and generated via photolithographic in situ synthesis,
shows that the efficiency of extension strongly depends on the nucleobase
sequence. We also show TdT being catalytically active on a non-nucleosidic
substrate, hexaethylene glycol. These results offer new perspectives
on constraints and strategies for de novo synthesis
of DNA using TdT regarding the requirements for initiation of enzymatic
generation of DNA.
Collapse
Affiliation(s)
- Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| |
Collapse
|
18
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Song LF, Deng ZH, Gong ZY, Li LL, Li BZ. Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:689797. [PMID: 34239862 PMCID: PMC8258115 DOI: 10.3389/fbioe.2021.689797] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, remarkable progress on phosphoramidite chemistry-based large-scale de novo oligonucleotide synthesis has been achieved, enabling numerous novel and exciting applications. Among them, de novo genome synthesis and DNA data storage are striking. However, to make these two applications more practical, the synthesis length, speed, cost, and throughput require vast improvements, which is a challenge to be met by the phosphoramidite chemistry. Harnessing the power of enzymes, the recently emerged enzymatic methods provide a competitive route to overcome this challenge. In this review, we first summarize the status of large-scale oligonucleotide synthesis technologies including the basic methodology and large-scale synthesis approaches, with special focus on the emerging enzymatic methods. Afterward, we discuss the opportunities and challenges of large-scale oligonucleotide synthesis on de novo genome synthesis and DNA data storage respectively.
Collapse
Affiliation(s)
- Li-Fu Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zheng-Hua Deng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zi-Yi Gong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lu-Lu Li
- LC-BIO Technologies Co., Ltd., Hangzhou, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Xu C, Zhao C, Ma B, Liu H. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Res 2021; 49:5451-5469. [PMID: 33836076 PMCID: PMC8191772 DOI: 10.1093/nar/gkab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/16/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxyribonucleic acid (DNA) has evolved to be a naturally selected, robust biomacromolecule for gene information storage, and biological evolution and various diseases can find their origin in uncertainties in DNA-related processes (e.g. replication and expression). Recently, synthetic DNA has emerged as a compelling molecular media for digital data storage, and it is superior to the conventional electronic memory devices in theoretical retention time, power consumption, storage density, and so forth. However, uncertainties in the in vitro DNA synthesis and sequencing, along with its conjugation chemistry and preservation conditions can lead to severe errors and data loss, which limit its practical application. To maintain data integrity, complicated error correction algorithms and substantial data redundancy are usually required, which can significantly limit the efficiency and scale-up of the technology. Herein, we summarize the general procedures of the state-of-the-art DNA-based digital data storage methods (e.g. write, read, and preservation), highlighting the uncertainties involved in each step as well as potential approaches to correct them. We also discuss challenges yet to overcome and research trends in the promising field of DNA-based data storage.
Collapse
Affiliation(s)
- Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
21
|
Yoo E, Choe D, Shin J, Cho S, Cho BK. Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Comput Struct Biotechnol J 2021; 19:2468-2476. [PMID: 34025937 PMCID: PMC8113751 DOI: 10.1016/j.csbj.2021.04.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022] Open
Abstract
The market for using and storing digital data is growing, with DNA synthesis emerging as an efficient way to store massive amounts of data. Storing information in DNA mainly consists of two steps: data writing and reading. The writing step requires encoding data in DNA, building one nucleotide at a time as a form of single-stranded DNA (ssDNA). Once the data needs to be read, the target DNA is selectively retrieved and sequenced, which will also be in the form of an ssDNA. Recently, enzyme-based DNA synthesis is emerging as a new method to be a breakthrough on behalf of decades-old chemical synthesis. A few enzymatic methods have been presented for data memory, including the use of terminal deoxynucleotidyl transferase. Besides, enzyme-based amplification or denaturation of the target strand into ssDNA provides selective access to the desired dataset. In this review, we summarize diverse enzymatic methods for either synthesizing ssDNA or retrieving the data-containing DNA.
Collapse
Affiliation(s)
- Eojin Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongoh Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Baumschlager A, Khammash M. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria. Adv Biol (Weinh) 2021; 5:e2000256. [PMID: 34028214 DOI: 10.1002/adbi.202000256] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light-control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
Collapse
Affiliation(s)
- Armin Baumschlager
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH-Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
23
|
Hoff K, Halpain M, Garbagnati G, Edwards JS, Zhou W. Enzymatic Synthesis of Designer DNA Using Cyclic Reversible Termination and a Universal Template. ACS Synth Biol 2020; 9:283-293. [PMID: 31895546 DOI: 10.1021/acssynbio.9b00315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphoramidite chemistry remains the industry standard for DNA synthesis despite significant limitations on the length and yield of the oligonucleotide, time restrictions, and hazardous waste production. Herein, we demonstrate the synthesis of single-stranded oligos on a solid surface by DNA polymerases and reverse transcriptases. We report the extension of surface-bound oligonucleotides enabled by transient hybridization of as few as two bases to a neighboring strand. When multiple hybridization structures are possible, each templating a different base, a DNA polymerase or reverse transcriptase can extend the oligonucleotide with any of the complementary bases. Therefore, the sequence of the newly synthesized fragment can be controlled by adding only the desired base as a substrate to the reaction solution. We used this enzymatic approach to synthesize a 20 base oligonucleotide by incorporating reversible terminator dNTPs through a two-step cyclic reversible termination process with a corrected stepwise efficiency over 98%. In our approach, a nascent DNA strand that serves as both primer and template is extended through polymerase-controlled sequential addition of 3'-reversibly blocked nucleotides followed by subsequent cleavage of the 3'-capping group. This process enables oligonucleotide synthesis in an environment not permitted by traditional phosphoramidite methods, eliminates the need for hazardous chemicals, has the potential to provide faster and higher yield results, and synthesizes DNA on a solid support with a free 3' end.
Collapse
Affiliation(s)
- Kendall Hoff
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Michelle Halpain
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Giancarlo Garbagnati
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| | - Jeremy S. Edwards
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
- Chemistry and Chemical Biology and Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico 87131, United States
| | - Wei Zhou
- Department of Advanced Research and Development, Centrillion Biosciences, Palo Alto, California 94303, United States
| |
Collapse
|
24
|
Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3' Terminal Structures for Enzymatic De Novo DNA Synthesis. Genes (Basel) 2020; 11:genes11010102. [PMID: 31963235 PMCID: PMC7016565 DOI: 10.3390/genes11010102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/13/2023] Open
Abstract
Enzymatic oligonucleotide synthesis methods based on the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) promise to enable the de novo synthesis of long oligonucleotides under mild, aqueous conditions. Intermediates with a 3′ terminal structure (hairpins) will inevitably arise during synthesis, but TdT has poor activity on these structured substrates, limiting its usefulness for oligonucleotide synthesis. Here, we described two parallel efforts to improve the activity of TdT on hairpins: (1) optimization of the concentrations of the divalent cation cofactors and (2) engineering TdT for enhanced thermostability, enabling reactions at elevated temperatures. By combining both of these improvements, we obtained a ~10-fold increase in the elongation rate of a guanine-cytosine hairpin.
Collapse
|
25
|
Lee HH, Kalhor R, Goela N, Bolot J, Church GM. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun 2019; 10:2383. [PMID: 31160595 PMCID: PMC6546792 DOI: 10.1038/s41467-019-10258-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA is an emerging medium for digital data and its adoption can be accelerated by synthesis processes specialized for storage applications. Here, we describe a de novo enzymatic synthesis strategy designed for data storage which harnesses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) in kinetically controlled conditions. Information is stored in transitions between non-identical nucleotides of DNA strands. To produce strands representing user-defined content, nucleotide substrates are added iteratively, yielding short homopolymeric extensions whose lengths are controlled by apyrase-mediated substrate degradation. With this scheme, we synthesize DNA strands carrying 144 bits, including addressing, and demonstrate retrieval with streaming nanopore sequencing. We further devise a digital codec to reduce requirements for synthesis accuracy and sequencing coverage, and experimentally show robust data retrieval from imperfectly synthesized strands. This work provides distributive enzymatic synthesis and information-theoretic approaches to advance digital information storage in DNA. Adoption of DNA as a data storage medium could be accelerated with specialized synthesis processes and codecs. The authors describe TdT-mediated DNA synthesis in which data is stored in transitions between non-identical nucleotides and the use of synchronization markers to provide error tolerance.
Collapse
Affiliation(s)
- Henry H Lee
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| | - Reza Kalhor
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA
| | - Naveen Goela
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - Jean Bolot
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| |
Collapse
|
26
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
27
|
De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol 2018; 36:645-650. [PMID: 29912208 DOI: 10.1038/nbt.4173] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 05/22/2018] [Indexed: 01/02/2023]
Abstract
Oligonucleotides are almost exclusively synthesized using the nucleoside phosphoramidite method, even though it is limited to the direct synthesis of ∼200 mers and produces hazardous waste. Here, we describe an oligonucleotide synthesis strategy that uses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT). Each TdT molecule is conjugated to a single deoxyribonucleoside triphosphate (dNTP) molecule that it can incorporate into a primer. After incorporation of the tethered dNTP, the 3' end of the primer remains covalently bound to TdT and is inaccessible to other TdT-dNTP molecules. Cleaving the linkage between TdT and the incorporated nucleotide releases the primer and allows subsequent extension. We demonstrate that TdT-dNTP conjugates can quantitatively extend a primer by a single nucleotide in 10-20 s, and that the scheme can be iterated to write a defined sequence. This approach may form the basis of an enzymatic oligonucleotide synthesizer.
Collapse
|
28
|
Jensen MA, Davis RW. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Biochemistry 2018. [PMID: 29533604 DOI: 10.1021/acs.biochem.7b00937] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a growing demand for sustainable methods in research and development, where instead of hazardous chemicals, an aqueous medium is chosen to perform biological reactions. In this Perspective, we examine the history and current methodology of using enzymes to generate artificial single-stranded DNA. By using traditional solid-phase phosphoramidite chemistry as a metric, we also explore criteria for the method of template-independent enzymatic oligonucleotide synthesis (TiEOS). As its key component, we delve into the biology of one of the most enigmatic enzymes, terminal deoxynucleotidyl transferase (TdT). As TdT is found to exponentially increase antigen receptor diversity in the vertebrate immune system by adding nucleotides in a template-free manner, researchers have exploited this function as an alternative to the phosphoramidite synthesis method. Though TdT is currently the preferred enzyme for TiEOS, its random nucleotide incorporation presents a barrier in synthesis automation. Taking a closer look at the TiEOS cycle, particularly the coupling step, we find it is comprised of additions > n+1 and deletions. By tapping into the physical and biochemical properties of TdT, we strive to further elucidate its mercurial behavior and offer ways to better optimize TiEOS for production-grade oligonucleotide synthesis.
Collapse
Affiliation(s)
- Michael A Jensen
- Stanford Genome Technology Center, Department of Biochemistry , Stanford University , Palo Alto , California 94304 , United States
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry , Stanford University , Palo Alto , California 94304 , United States.,Department of Genetics , Stanford University , Palo Alto , California 94304 , United States
| |
Collapse
|
29
|
Mathews AS, Yang H, Montemagno C. 3'-O-Caged 2'-Deoxynucleoside Triphosphates for Light-Mediated, Enzyme-Catalyzed, Template-Independent DNA Synthesis. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 71:13.17.1-13.17.38. [PMID: 29275537 DOI: 10.1002/cpnc.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthesis, purification, and characterization of 3'-O-caged 2'-deoxyribonucleoside triphosphates (dNTPs), namely 3'-O-(2-nitrobenzyl)-2'-deoxy ribonucleoside triphosphates (NB-dNTPs) and 3'-O-(4,5-dimethoxy-2-nitrobenzyl)-2'-deoxy ribonucleoside triphosphates (DMNB-dNTPs), are discussed in detail. A total of eight 3'-O-caged dNTPs are synthesized with specific protocols depending on the nitrogenous base on the first carbon, i.e., adenine, guanine, thymine, and cytosine, as well as the photo-cleavable group, i.e, 2-nitrobenzyl and 4,5- dimethoxy-2-nitrobenzyl, to be attached in the 3'-O position. The purification of the synthesized compounds is done using ion-exchange and flash chromatography; this is followed by structural confirmation by nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The efficiency of the designed compounds is tested by conducting and evaluating UV-cleaving experiments at 365 nm with proton NMR and LC-MS curves. Finally, the application of the 3'-O-cagged dNTPs in template-independent, enzyme-catalyzed, photo-mediated oligonucleotide synthesis is demonstrated. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Anu Stella Mathews
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Haikang Yang
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Carlo Montemagno
- Ingenuity Lab, Edmonton, Alberta, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|