1
|
Yoshioka E, Imoto Y, Yamaoka Y, Ikeda T, Takahashi H, Tanaka R, Hayashi N, Miyabe H. Intramolecular Cyclopropanation of Active Methylene Derivatives Based on FeCl 2 or FeCl 3-Promoted Radical-Polar Crossover Reactions. Chemistry 2024; 30:e202400602. [PMID: 38658317 DOI: 10.1002/chem.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Radical-polar crossover reactions were studied for the intramolecular cyclopropanation of active methylene derivatives. In the presence of FeCl3 as a stoichiometric oxidant and K2HPO4 as a base, the dehydrogenative cyclopropanation of active methylenes proceeded through the FeCl3-promoted oxidative radical cyclization followed by the ionic cyclization to give the bicyclic cyclopropanes. The use of α-chloro-active methylenes leads the subcatalytic cyclopropanation involving two redox pathways. In the presence of K2HPO4, the redox cyclopropanation proceeded by using FeCl2 (20 mol%) in combination with ligand (20 mol%).
Collapse
Affiliation(s)
- Eito Yoshioka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yuuki Imoto
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yousuke Yamaoka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Tomoko Ikeda
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hiroki Takahashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Ryousuke Tanaka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Naoki Hayashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hideto Miyabe
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| |
Collapse
|
2
|
Jiang R, Zhou DY, Asano K, Suzuki T, Suzuki T. Catalytic asymmetric synthesis of (−)-arctigenin using a chiral Ir complex. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Liu W, Winssinger N. Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1577-6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.1 Introduction2 Approaches to α-exo-Methylene-γ-butyrolactones2.1 Enantioselective Synthesis via Lactonization Approaches2.2 Enantioselective Halolactonizations2.3 Enantioselective Barbier-Type Allylation2.4 C–H Insertion/Olefination Sequences2.5 Alkene Cyclization2.6 Strain-Driven Dyotropic Rearrangement3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones4 Applications in Total Synthesis4.1 Sesquiterpene Lactones4.2 Lignans4.3 Other Monocyclic Natural Products4.4 Choice of Methodology in Recent Total Syntheses5 Summary and Outlook
Collapse
|
4
|
Faltracco M, van de Vrande KNA, Dijkstra M, Saya JM, Hamlin TA, Ruijter E. Palladium-Catalyzed Cascade to Benzoxepins by Using Vinyl-Substituted Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2021; 60:14410-14414. [PMID: 33822456 PMCID: PMC8251625 DOI: 10.1002/anie.202102862] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/18/2022]
Abstract
A palladium-catalyzed intermolecular cascade (4+3) cyclocondensation of salicylaldehydes and vinylcyclopropanes is reported. A key feature of the reaction is the use of a phosphonate group as an acceptor moiety on the cyclopropane, exploiting its propensity to undergo olefination with aldehydes. Subsequent O-allylation enabled the formation of a range of substituted benzoxepinsWith a novel chiral ligand, the products were obtained in generally good yield and with reasonable enantioselectivity.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Koen N. A. van de Vrande
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Martijn Dijkstra
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Jordy M. Saya
- Aachen-Maastricht Institute for Biobased Materials (AMIBM)Maastricht UniversityUrmonderbaan 226167 RDGeleenThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical SciencesAmsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
5
|
Faltracco M, Vrande KNA, Dijkstra M, Saya JM, Hamlin TA, Ruijter E. Palladium‐Catalyzed Cascade to Benzoxepins by Using Vinyl‐Substituted Donor–Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry and Pharmaceutical Sciences Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Koen N. A. Vrande
- Department of Chemistry and Pharmaceutical Sciences Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Martijn Dijkstra
- Department of Chemistry and Pharmaceutical Sciences Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Jordy M. Saya
- Aachen-Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences Amsterdam Institute of Molecular and Life Sciences (AIMMS) Vrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
6
|
|
7
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Ivanov KL, Villemson EV, Latyshev GV, Bezzubov SI, Majouga AG, Melnikov MY, Budynina EM. Regioselective Hydrogenolysis of Donor–Acceptor Cyclopropanes with Zn-AcOH Reductive System. J Org Chem 2017; 82:9537-9549. [DOI: 10.1021/acs.joc.7b01549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Konstantin L. Ivanov
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Elena V. Villemson
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Gennadij V. Latyshev
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Stanislav I. Bezzubov
- Kurnakov
Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991, Russia
| | - Alexander G. Majouga
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- National University of Science and Technology “MISiS”, Leninskiy pr. 4, Moscow 119991, Russia
| | - Mikhail Ya. Melnikov
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Ekaterina M. Budynina
- Department
of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
9
|
Gao M, Wang XZ, Shu YT, Liang J, Chen L, Liu R, Liang JY, Wen HM. Peperomin E and its synthetic amino derivatives: potent agents targeting leukaemia stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra09928b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of amino derivatives of Peperomin E have been synthesized. Compound 6, derived from N-methylethanolamine, exhibited exclusive cytotoxicity against leukaemia stem cells (IC50 = 0.5 μM) and low toxicity against normal bone marrow cells.
Collapse
Affiliation(s)
- Ming Gao
- School of Pharmacy
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Xin-zhi Wang
- Marine Drug Research and Development Center of Jiangsu Province
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Ye-ting Shu
- School of Pharmacy
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Jie Liang
- School of Pharmacy
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Liang Chen
- School of Pharmacy
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Rui Liu
- Marine Drug Research and Development Center of Jiangsu Province
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| | - Jing-yu Liang
- Department of Natural Medicinal Chemistry
- China Pharmaceutical University
- 210009 Nanjing
- The People's Republic of China
| | - Hong-mei Wen
- School of Pharmacy
- Nanjing University of Chinese Medicines
- Nanjing 210023
- The People's Republic of China
| |
Collapse
|