1
|
Liu Y, Chen H, Wang X. Synergistic Homogeneous Asymmetric Cu Catalysis with Pd Nanoparticle Catalysis in Stereoselective Coupling of Alkynes with Aldimine Esters. J Am Chem Soc 2024; 146:28427-28436. [PMID: 39356822 DOI: 10.1021/jacs.4c09983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Understanding the nature of a transition-metal-catalyzed process, including catalyst evolution and the real active species, is rather challenging yet of great importance for the rational design and development of novel catalysts, and this is even more difficult for a bimetallic catalytic system. Pd(0)/carboxylic acid combined system-catalyzed allylic alkylation reaction of alkynes has been used as an atom-economical protocol for the synthesis of allylic products. However, the asymmetric version of this reaction is still rather limited, and the in-depth understanding of the nature of active Pd species is still elusive. Herein we report an enantioselective coupling between readily available aldimine esters and alkynes using a synergistic Cu/Pd catalyst system, affording a diverse set of α-quaternary allyl amino ester derivatives in good yields with excellent enantioselectivities. Mechanistic studies indicated that it is most likely a synergistic asymmetric molecular Cu catalysis with Pd nanoparticle catalysis. The Pd catalyst precursor is transformed to soluble Pd nanoparticles in situ, which are responsible for activating the alkyne to an electrophilic allylic Pd intermediate, while the chiral Cu complex of the aldimine ester enolate provides chiral induction and works in synergy with the Pd nanoparticles.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hongda Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Jia Y, Jiang P, Wang X, Ablajan K. One-Pot, Metal-Free Synthesis of Allyl Sulfones in Water. J Org Chem 2024. [PMID: 38194354 DOI: 10.1021/acs.joc.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A one-pot dehydration cross-coupling reaction between allyl alcohols and sodium sulfinates that provides allyl sulfones in good to excellent yields is presented. Its broad substrate scope includes symmetrical and asymmetrical α,α-diaryl- and α-aryl-substituted allylic alcohols and aryl and alkyl sodium sulfinates. For asymmetrical allylic substrates, the E isomer predominates with examples of excellent stereoselectivity. Control experiments provide the basis for a proposed radical-mediated mechanism. The metal-free procedure applies cheap and commercially available tetrabutylammonium tribromide as the catalyst and H2O as the solvent. Notable features of this simple, efficient, weakly toxic, and environmentally benign strategy include mild and convenient operating conditions and readily accessible starting materials.
Collapse
Affiliation(s)
- Yunfei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Ping Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Xinqian Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
3
|
Bhoi SR, Debnath C, Gandhi S. Pd/Brønsted acid catalysed intramolecular N-allylation of indoles and pyrroles with alkynes for the synthesis of N-fused heterocycles. Chem Commun (Camb) 2024; 60:428-431. [PMID: 38086631 DOI: 10.1039/d3cc05023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We, herein, report a Pd(0) and Brønsted acid-catalyzed redox-neutral intramolecular N-allylation of indoles and pyrroles with alkynes for the synthesis of biologically important imidazolidinone-fused N-heterocycles. The allylation is completely atom-economical and is applicable to a wide range of substrates. The methodology eliminates the use of a leaving group or an oxidizing agent, often employed for the allylation of nucleophiles. To the best of our knowledge, N-allylation of indoles and pyrroles with alkynes has not been reported to date.
Collapse
Affiliation(s)
- Saswat Ranjan Bhoi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India.
| | - Chhanda Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India.
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India.
| |
Collapse
|
4
|
Rehman SU, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Sulfonylation from Sulfonyl Hydrazides. Org Lett 2023; 25:3693-3697. [PMID: 37184285 DOI: 10.1021/acs.orglett.3c01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A highly regio- and enantioselective allylic sulfonylation has been developed with rhodium and bisoxazolinephosphine (NPN*) ligands from racemic branched allylic carbonates and readily available sulfonyl hydrazides under neutral conditions. Branch-selective allylic sulfones with a >20:1 branch:linear ratio and >99% ee could be synthesized in ≤96% yield. Both Z and E linear allylic carbonates could also be converted into the same chiral branched allylic sulfones with high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Abstract
Herein we report C(sp2)-S cross-coupling reactions of aryl iodides and arylsulfonyl hydrazides under ligand-enabled, Au(I)/Au(III) redox catalysis. This strategy operates under mild reaction conditions, requires no prefunctionalized aryl coupling partner, and works across several aryl iodides. The utility of this protocol is highlighted through the synthesis of various medicinally relevant biaryl sulfones. The reaction mechanism is supported with control experiments, mass spectrometry, and NMR studies.
Collapse
Affiliation(s)
- Akash G Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
6
|
Cera G, Maestri G. Palladium/Brønsted Acid Catalysis for Hydrofunctionalizations of Alkynes: from Tsuji‐Trost Allylations to Stereoselective Methodologies. ChemCatChem 2022. [DOI: 10.1002/cctc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gianpiero Cera
- Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| |
Collapse
|
7
|
Fan T, Ma X, Liu Y, Jiang C, Xu Y, Chen Y. Visible-Light-Induced Tandem Reaction of Allenes with Selenesulfonates Leading to ( E)-2,3-Disulfonylpropene Derivatives. J Org Chem 2022; 87:5846-5855. [PMID: 35414178 DOI: 10.1021/acs.joc.2c00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced tandem reaction of allenes with selenesulfonates was developed, providing (E)-2,3-disulfonylpropene derivatives in moderate to good yields. This reaction was featured with simple operation, good regioselectivity and stereoselectivity, and wide functional group tolerance. Photoinduced radical additions via energy transfer were proposed.
Collapse
Affiliation(s)
- Tao Fan
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Xianli Ma
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yan Liu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Caina Jiang
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
8
|
Lu CJ, Chen YT, Wang H, Li YJ. Palladium-catalyzed dearomative allylation of indoles with cyclopropyl acetylenes: access to indolenine derivatives. Org Biomol Chem 2021; 19:635-644. [PMID: 33367392 DOI: 10.1039/d0ob02103b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed redox-neutral allylic alkylation of indoles with cyclopropyl acetylenes has been disclosed. Various 1,3-diene indolenine framework bearing a quaternary stereocenter at the C3 position were synthesized straightforwardly in good to excellent yields with high regio- and stereoselectivities. The reaction could be further expanded to the dearomatization of naphthols to synthesize functionalized cyclohexadienones with 1,3-diene motifs. The reaction exhibited high atom economy and good functional group tolerance.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China. and College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Yu-Ting Chen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yu-Jin Li
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| |
Collapse
|
9
|
Zhang MN, Khan S, Zhang J, Khan A. Palladium nanoparticles as efficient catalyst for C-S bond formation reactions. RSC Adv 2020; 10:31022-31026. [PMID: 35520647 PMCID: PMC9056434 DOI: 10.1039/d0ra05848c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
The development of green, economical and sustainable chemical processes is one of the primary challenges in organic synthesis. Herein, we report an efficient and heterogeneous palladium-catalyzed sulfonylation of vinyl cyclic carbonates with sodium sulfinates via decarboxylative cross-coupling. Both aliphatic and aromatic sulfinate salts react with various vinyl cyclic carbonates to deliver the desired allylic sulfones featuring tri- and even tetrasubstituted olefin scaffolds in high yields with excellent selectivity. The process needs only 2 mol% of Pd2(dba)3 and the in situ formed palladium nano-particles are found to be the active catalyst.
Collapse
Affiliation(s)
- Mei-Na Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
10
|
Zhao S, Chen K, Zhang L, Yang W, Huang D. Sulfonyl Hydrazides in Organic Synthesis: A Review of Recent Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000466] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuangte Zhao
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Kaijun Chen
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Ling Zhang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Weiguang Yang
- The Marine Biomedical Research InstituteGuangdong Medical University Zhanjiang 524023, Guangdong Province
| | - Dayun Huang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| |
Collapse
|
11
|
Lu CJ, Yu X, Chen YT, Song QB, Yang ZP, Wang H. Palladium-Catalyzed Allylation of Cyclopropyl Acetylenes with Oxindoles to Construct 1,3-Dienes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| | - Xin Yu
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| | - Yu-Ting Chen
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| | - Qing-Bao Song
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| | - Zhen-Ping Yang
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| | - Hong Wang
- College of Chemical Engineering; Zhejiang University of Technology; Chaowang Road 18# 310014 Hangzhou ZheJiang China
| |
Collapse
|
12
|
Ji DW, Yang F, Chen BZ, Min XT, Kuai CS, Hu YC, Chen QA. Rhodium-catalyzed regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes. Chem Commun (Camb) 2020; 56:8468-8471. [DOI: 10.1039/d0cc04002a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An atom-economical, regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes was developed under rhodium catalysis.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Fan Yang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Chang-Sheng Kuai
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
13
|
Balgotra S, Verma PK, Vishwakarma RA, Sawant SD. Catalytic advances in direct functionalizations using arylated hydrazines as the building blocks. CATALYSIS REVIEWS 2019. [DOI: 10.1080/01614940.2019.1702191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shilpi Balgotra
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
14
|
Yang S, Wang L, Wang L, Li H. Visible-Light Photoredox-Catalyzed Regioselective Sulfonylation of Alkenes Assisted by Oximes via [1,5]-H Migration. J Org Chem 2019; 85:564-573. [DOI: 10.1021/acs.joc.9b02646] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Lulu Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Zhang J, Bao W, Qin F, Lei K, Li Q, Wei W. Copper‐Catalyzed Sulfonyl Radical‐Enabled Regioselective Cyclization of 1,6‐Enynes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jun‐Yao Zhang
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Wen‐Hui Bao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Fu‐Hua Qin
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Ke‐Wei Lei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 China
| | - Wen‐Ting Wei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 China
| |
Collapse
|
16
|
Ren W, Zuo QM, Niu YN, Yang SD. Palladium-NHC-Catalyzed Allylic Alkylation of Pronucleophiles with Alkynes. Org Lett 2019; 21:7956-7960. [PMID: 31513418 DOI: 10.1021/acs.orglett.9b02937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The palladium-N-heterocyclic carbene (NHC)-catalyzed allylic alkylation of various pronucleophiles with alkynes has been accomplished under mild conditions. The protocol exhibits broad functional group compatibility and high atom economy. Moreover, the catalytic process avoids the use of external oxidants and acid as additives.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Qian-Ming Zuo
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Yan-Ning Niu
- Department of Teaching and Research , Nanjing Forestry University , Huaian 223003 , P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
17
|
Ji DW, Hu YC, Zheng H, Zhao CY, Chen QA, Dong VM. A regioselectivity switch in Pd-catalyzed hydroallylation of alkynes. Chem Sci 2019; 10:6311-6315. [PMID: 31341584 PMCID: PMC6598511 DOI: 10.1039/c9sc01527b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
By exploiting the reactivity of a vinyl-Pd species, we control the regioselectivity in hydroallylation of alkynes under Pd-hydride catalysis. A monophosphine ligand and carboxylic acid combination promotes 1,5-dienes through a pathway involving isomerization of alkynes to allenes. In contrast, a bisphosphine ligand and copper cocatalyst favor 1,4-dienes via a mechanism that involves transmetalation. Our study highlights how to access different isomers by diverting a common organometallic intermediate.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
| | - Hao Zheng
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chao-Yang Zhao
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , P. R. China .
| | - Vy M Dong
- Department of Chemistry , University of California , Irvine , California 92697-2025 , USA
| |
Collapse
|
18
|
Lu CJ, Yu X, Chen DK, Wang H, Song QB, Gao JR. Palladium-catalyzed allylation of aminophenol with alkynes to construct C-N bonds. Org Biomol Chem 2019; 17:3545-3551. [PMID: 30896704 DOI: 10.1039/c9ob00333a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the allylic alkylation of aminophenol with alkynes was developed using a palladium-catalysed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted allylamines were synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | | | | | | | | | | |
Collapse
|
19
|
Ye S, Li X, Xie W, Wu J. Three‐Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible‐Light Irradiation. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900172] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shengqing Ye
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Xiaofang Li
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Wenlin Xie
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Jie Wu
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
20
|
Tang XZ, Liang J, Zhang XJ, Sun RWY, Yan M, Chan ASC. Synthesis of multisubstituted arylsulfones via a one-pot, three-component [3 + 3] benzannulation reaction. Org Biomol Chem 2019; 17:4753-4760. [DOI: 10.1039/c9ob00394k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A one-pot, three-component [3 + 3] benzannulation reaction of α,β-unsaturated carbonyl compounds, bromoallylic sulfones, and sodium sulfinates provided multisubstituted arylsulfones with moderate to good yields.
Collapse
Affiliation(s)
- Xiang-Zheng Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Liang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xue-Jing Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | | | - Ming Yan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
21
|
Bao P, Wang L, Liu Q, Yang D, Wang H, Zhao X, Yue H, Wei W. Direct coupling of haloquinolines and sulfonyl chlorides leading to sulfonylated quinolines in water. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Zhang J, Zhou K, Qiu G, Wu J. Photoinduced synthesis of allylic sulfones using potassium metabisulfite as the source of sulfur dioxide. Org Chem Front 2019. [DOI: 10.1039/c8qo01048j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthesis of allylic sulfones through a photoinduced three-component reaction of aryl/alkyl halides, potassium metabisulfite, and allylic bromides under ultraviolet irradiation at room temperature is developed. Diverse allylic sulfones are generated in moderate to good yields.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Kaida Zhou
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- College of Biological
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
23
|
Liu Y, Wang QL, Chen Z, Chen P, Tang KW, Zhou Q, Xie J. Visible-light-induced cascade sulfonylation/cyclization of N-propargylindoles with aryldiazonium tetrafluoroborates via the insertion of sulfur dioxide. Org Biomol Chem 2019; 17:10020-10029. [DOI: 10.1039/c9ob02102g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and efficient visible-light-catalyzed cascade sulfonylation/cyclization of N-propargylindoles with K2S2O5 and aryldiazonium tetrafluoroborates for the construction of 2-sulfonyl-substituted 9H-pyrrolo[1,2-a]indoles is developed.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Pu Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| |
Collapse
|
24
|
Pramanik M, Choudhuri K, Mal P. N
-Iodosuccinimide as Bifunctional Reagent in (E
)-Selective C(sp2
)−H Sulfonylation of Styrenes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800644] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Milan Pramanik
- Milan Pramanik, Khokan Choudhuri, Dr. Prasenjit Mal, School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda; Odisha 752050 India
| | - Khokan Choudhuri
- Milan Pramanik, Khokan Choudhuri, Dr. Prasenjit Mal, School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda; Odisha 752050 India
| | - Prasenjit Mal
- Milan Pramanik, Khokan Choudhuri, Dr. Prasenjit Mal, School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda; Odisha 752050 India
| |
Collapse
|
25
|
Liu Z, Breit B. Rhodium-Catalyzed Regio- and Enantioselective Addition of N-Hydroxyphthalimide to Allenes: A Strategy To Synthesize Chiral Allylic Alcohols. Org Lett 2017; 20:300-303. [DOI: 10.1021/acs.orglett.7b03709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zi Liu
- Institut für Organische Chemie, Albert-Ludwigs-Universität-Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität-Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Hou Y, Shen Q, Li Z, Chen S, Zhao Y, Qin M, Gong P. Palladium-Catalyzed Three-Component Tandem Reaction for One-pot Highly Stereoselective Synthesis of (Z
)-α
-Hydroxymethyl Allylic Sulfones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yunlei Hou
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Qi Shen
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Zefei Li
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Shaowei Chen
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Yanfang Zhao
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Mingze Qin
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| | - Ping Gong
- Key Laboratory of Structure-based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 People's Republic of China
| |
Collapse
|
27
|
Affiliation(s)
- Khokan Choudhuri
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur; Via Jatni District Khurda, Odisha 752050 India
| | - Tapas Kumar Achar
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur; Via Jatni District Khurda, Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences; National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur; Via Jatni District Khurda, Odisha 752050 India
| |
Collapse
|
28
|
Haydl AM, Breit B, Liang T, Krische MJ. Alkynes as Electrophilic or Nucleophilic Allylmetal Precursors in Transition-Metal Catalysis. Angew Chem Int Ed Engl 2017; 56:11312-11325. [PMID: 28605083 PMCID: PMC5637541 DOI: 10.1002/anie.201704248] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/06/2022]
Abstract
Diverse late transition metal catalysts convert terminal or internal alkynes into transient allylmetal species that display electrophilic or nucleophilic properties. Whereas classical methods for the generation of allylmetal species often form stoichiometric by-products, the recent use of alkynes as allylmetal precursors enables completely atom-efficient catalytic processes to be carried out, including enantioselective transformations.
Collapse
Affiliation(s)
- Alexander M Haydl
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg i. Brsg., Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg i. Brsg., Germany
| | - Tao Liang
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Welch Hall, A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. Welch Hall, A5300, Austin, TX, 78712-1167, USA
| |
Collapse
|
29
|
Gao S, Liu H, Yang C, Fu Z, Yao H, Lin A. Accessing 1,3-Dienes via Palladium-Catalyzed Allylic Alkylation of Pronucleophiles with Skipped Enynes. Org Lett 2017; 19:4710-4713. [PMID: 28837351 DOI: 10.1021/acs.orglett.7b01960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented palladium-catalyzed allylic alkylation of pronucleophiles with unactivated skipped enynes has been developed. This method provides a straightforward access to a wide array of 1,3-dienes without the need to preinstall leaving groups or employ extra oxidants. The reaction exhibited high atom economy, good functional group tolerance, excellent regioselectivities, and scalability. With D2O as cosolvent, deuterium could be incorporated in high efficiency.
Collapse
Affiliation(s)
- Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Hao Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Chi Yang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Zhiyuan Fu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
30
|
Haydl AM, Breit B, Liang T, Krische MJ. Alkine als alternativer Einstieg in elektrophile und nukleophile Übergangsmetall-katalysierte Allylierungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704248] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander M. Haydl
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg i. Brsg. Deutschland), -frei burg.de
| | - Bernhard Breit
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg i. Brsg. Deutschland), -frei burg.de
| | - Tao Liang
- Department of Chemistry; University of Texas at Austin; 105 E 24th St. Welch Hall, A5300 Austin TX 78712-1167 USA
| | - Michael J. Krische
- Department of Chemistry; University of Texas at Austin; 105 E 24th St. Welch Hall, A5300 Austin TX 78712-1167 USA
| |
Collapse
|
31
|
Lu CJ, Chen DK, Chen H, Wang H, Jin H, Huang X, Gao J. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes. Org Biomol Chem 2017; 15:5756-5763. [PMID: 28654125 DOI: 10.1039/c7ob01119a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Dong-Kai Chen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hong Chen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Hongwei Jin
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | | | - Jianrong Gao
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| |
Collapse
|
32
|
Shinde PS, Patil NT. Gold-Catalyzed Dehydrazinative C(sp)-S Coupling Reactions of Arylsulfonyl Hydrazides with Ethynylbenziodoxolones for Accessing Alkynyl Sulfones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Popat S. Shinde
- Division of Organic Chemistry; CSIR - National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110025 New Delhi India
| | - Nitin T. Patil
- Division of Organic Chemistry; CSIR - National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110025 New Delhi India
| |
Collapse
|
33
|
Meesin J, Pohmakotr M, Reutrakul V, Soorukram D, Leowanawat P, Kuhakarn C. Synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles by cascade annulation of 2-alkynyl-N,N-dialkylanilines. Org Biomol Chem 2017; 15:3662-3669. [DOI: 10.1039/c7ob00366h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Divergent synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles from 2-alkynyl-N,N-dialkylanilines and sulfonyl hydrazides has been described.
Collapse
Affiliation(s)
- Jatuporn Meesin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC)
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
34
|
Wan Y, Zhang J, Chen Y, Kong L, Luo F, Zhu G. Palladium-catalyzed tandem cyclization/sulfonylation of homoallenyl amides with sodium sulfinates. Org Biomol Chem 2017; 15:7204-7211. [DOI: 10.1039/c7ob01922j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A palladium-catalyzed cyclizative sulfonylation of homoallenyl amides has been developed using sodium sulfinates as the sulfonylation reagent and PhI(O2CCF3)2 as the oxidant, providing a facile access to 2-amino-5-sulfonylmethylfurans in good to excellent yields.
Collapse
Affiliation(s)
- Yimei Wan
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Jian Zhang
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Yongtao Chen
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Lichun Kong
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Fang Luo
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| | - Gangguo Zhu
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|