1
|
Alizadeh A, Rostampoor A. Domino Reaction for the Synthesis of Substituted Pyrano[3',4':3,4]cyclopenta[1,2- c]chromenes Involving Double Ring Formation. J Org Chem 2024; 89:15739-15748. [PMID: 39411837 DOI: 10.1021/acs.joc.4c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Herein, we present a green cascade approach for synthesizing a range of chemoselective polysubstituted pyrano[3',4':3,4]cyclopenta[1,2-c]chromenes containing a chiral stereocenter. The strategy involves a metal-free nucleophilic reaction between dialkyl (2E)-2-{2-oxo-3-[(2E)-3-aryl-2-propenoyl]-2H-chromen-4-yl}-2-butenedioates and α,α-dicyanoolefins under reflux conditions in ethanol solvent. Mechanistic studies have shown that the reaction proceeds via a cascade of steps, including Michael addition, intramolecular C- and O-cyclization, intramolecular trans-esterification, [1,2]-H and [1,5]-methoxy- and ethoxy carbonyl shift, and finally aromatization to yield the desired product. In this method, three bonds (2C-C and C-O) form in one pot, simultaneously forming two new cyclopentane and pyrano rings by double cyclization reactions. Other advantages of this method are that it has a simple operation, readily available starting materials, a chemoselective cascade process, transition metal-free, synthetically useful yields, and green conditions by using ethanol as a solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14115-175, Iran
| | - Azar Rostampoor
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14115-175, Iran
| |
Collapse
|
2
|
Kumar N, Pandey SK. Metal-free synthesis of α-acyloxy ketones from carboxylic acids and sulfoxonium ylides. Org Biomol Chem 2023; 21:8819-8822. [PMID: 37899657 DOI: 10.1039/d3ob01683h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A straightforward, catalyst- and additive-free approach has been described for synthesizing α-acyloxy ketones from β-ketosulfoxonium ylides and carboxylic acids. Moderate to high yields of α-acyloxy ketones were produced using sulfoxonium ylides and carboxylic acids adorned with various functional groups. Eventually, the applicability of this approach has been shown via a large-scale reaction and transforming the synthesized α-acyloxy ketone derivatives into other valuable compounds.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
3
|
Li LP, Han JQ, Liu YT, Yang F, Wu X, Xie JH, Zhou QL. A Three-Step Process to Facilitate the Enantioselective Assembly of Cis-Fused Octahydrophenanthrenes with a Quaternary Stereocenter. Org Lett 2022; 24:2590-2595. [PMID: 35357843 DOI: 10.1021/acs.orglett.2c00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A three-step process for the enantioselective assembly of cis-fused octahydrophenanthrenes with a quaternary stereocenter is reported. This synthetic strategy relies on a regioselective γ-alkylation, a one-pot sequence of asymmetric hydrogenation and oxidation, and an intramolecular enolate arylation to facilitate the rapid and enantioselective construction of cis-fused octahydrophenanthrene scaffolds with an arylated all-carbon quaternary stereocenter concisely and efficiently.
Collapse
Affiliation(s)
- Lin-Ping Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yun-Ting Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| |
Collapse
|
4
|
Farajpour B, Alizadeh A. Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Org Biomol Chem 2022; 20:8366-8394. [DOI: 10.1039/d2ob01551j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides a review of the applications of α,α-dicyanoolefins as versatile vinylogous nucleophiles in the synthesis of various cyclic compounds, covering the literature from the past 13 years.
Collapse
Affiliation(s)
- Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
5
|
Chen X, Xin Y, Zhao ZW, Hou YJ, Wang XX, Xia WJ, Li YM. Decarboxylative Oxyacyloxylation of Propiolic Acids: Construction of Alkynyl-Containing α-Acyloxy Ketones. J Org Chem 2021; 86:8216-8225. [PMID: 34085512 DOI: 10.1021/acs.joc.1c00669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel decarboxylative oxyacyloxylation of propiolic acids has been developed. This reaction provides an efficient access to alkynyl-containing α-acyloxy ketones from readily available starting materials and exhibits significant functional group tolerance. Furthermore, oxyacyloxylation of terminal alkynes and aliphatic propiolic acids was also developed. A possible reaction mechanism is proposed based on mechanistic studies.
Collapse
Affiliation(s)
- Xin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yangchun Xin
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
6
|
Pan H, Han MY, Li P, Wang L. “On Water” Direct Catalytic Vinylogous Aldol Reaction of Silyl Glyoxylates. J Org Chem 2019; 84:14281-14290. [DOI: 10.1021/acs.joc.9b01945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Pan
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Man-Yi Han
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Navaratne PV, Grenning AJ. Tetrahydrobenzochromene Synthesis Enabled by a Deconjugative Alkylation/Tsuji-Saegusa-Ito Oxidation on Knoevenagel Adducts. Org Lett 2018; 20:4566-4570. [PMID: 30009612 DOI: 10.1021/acs.orglett.8b01857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular and practical route to versatile cyano-1,3-dienes by a sequence involving deconjugative alkylation and "Tsuji-Saegusa-Ito oxidation" is reported. In this letter, the versatility of the products is also explored, including a route to benzochromene scaffolds common to many natural products.
Collapse
Affiliation(s)
- Primali V Navaratne
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| | - Alexander J Grenning
- Department of Chemistry , University of Florida , P.O. Box 117200, Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
8
|
Stereoselective synthesis of 1,2-annulated-C-Aryl glycosides from carbohydrate-derived terminally unsubstituted dienes and arynes: Application towards synthesis of sugar-fused- or branched- naphthalenes, and C-Aryl glycosides. Carbohydr Res 2018; 465:29-34. [DOI: 10.1016/j.carres.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/03/2023]
|
9
|
Karki BS, Pramanik MMD, Kant R, Rastogi N. Visible light catalyzed reaction of α-bromochalcones with chalcones: direct access to the urundeuvine scaffold. Org Biomol Chem 2018; 16:7152-7156. [DOI: 10.1039/c8ob01881b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The α-keto vinyl radicals generated from α-bromochalcones under visible light photoredox catalyzed conditions were trapped by chalcones.
Collapse
Affiliation(s)
- Bhupal Singh Karki
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Mukund M. D. Pramanik
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| | - Ruchir Kant
- Molecular & Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Namrata Rastogi
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
10
|
Prasad PK, Reddi RN, Arumugam S. Recent methods for the synthesis of α-acyloxy ketones. Org Biomol Chem 2018; 16:9334-9348. [DOI: 10.1039/c8ob02881h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review provides a broad description of the methods reported for the synthesis of α-acyloxy ketones and some of their derivatives.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Rambabu N. Reddi
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Sudalai Arumugam
- Chemical Engineering & Process Development Division
- CSIR-National Chemical Laboratory
- Pune
- India
| |
Collapse
|
11
|
Fereyduni E, Grenning AJ. Factors Governing and Application of the Cope Rearrangement of 3,3-Dicyano-1,5-dienes and Related Studies. Org Lett 2017; 19:4130-4133. [PMID: 28723219 DOI: 10.1021/acs.orglett.7b01951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cope and co-workers reported the [3,3] rearrangement of 3,3-dicyano-1,5-dienes in the early 1940s ("The Cope rearrangement"). However, these original substrates have remained largely unstudied until recently. Herein we explore styrene-deconjugating Cope rearrangements, a diastereoselective Cope rearrangement/deconjugative α-allylation sequence, and factors governing α- vs γ-allylation regioselectivity of Knoevenagel adduct allyl anions. Ultimately, these studies result in the synthesis of diverse and functionally dense polycycloalkane frameworks from abundant reagents using simple chemistry.
Collapse
Affiliation(s)
- Ehsan Fereyduni
- University of Florida , Department of Chemistry, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Alexander J Grenning
- University of Florida , Department of Chemistry, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Scott SK, Grenning AJ. An Enyne Cope Rearrangement Enables Polycycloalkane Synthesis from Readily Available Starting Materials. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah K. Scott
- Department of Chemistry; University of Florida; PO Box 117200 Gainesville FL 32611-7200 USA
| | - Alexander J. Grenning
- Department of Chemistry; University of Florida; PO Box 117200 Gainesville FL 32611-7200 USA
| |
Collapse
|
13
|
Scott SK, Grenning AJ. An Enyne Cope Rearrangement Enables Polycycloalkane Synthesis from Readily Available Starting Materials. Angew Chem Int Ed Engl 2017; 56:8125-8129. [DOI: 10.1002/anie.201703186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sarah K. Scott
- Department of Chemistry; University of Florida; PO Box 117200 Gainesville FL 32611-7200 USA
| | - Alexander J. Grenning
- Department of Chemistry; University of Florida; PO Box 117200 Gainesville FL 32611-7200 USA
| |
Collapse
|