1
|
Deslongchamps P. A new mechanism for the thermal and photochemical Diels-Alder cycloaddition based on the bent bond / antiperiplanar hypothesis orbital model. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Stereochemistry of Eʹ and Eʹʹ decarboxylative-dehydration reactions and the bent bond / antiperiplanar hypothesis orbital model. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Abstract
With a view to reducing the notorious complexity and irreproducibility of glycosylation reactions, 12 guidelines for the choice of concentration, temperature, and counterions are adumbrated.
Collapse
Affiliation(s)
- Peter R. Andreana
- Department of Chemistry
and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical
Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Revisiting the conformational analysis of unsaturated organic compounds using the bent bond / antiperiplanar hypothesis. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Deslongchamps P. Bent bond / antiperiplanar hypothesis and antiaromatic, aromatic and nonaromatic molecules. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Deslongchamps P. The conformation and reactivity of butadiene and the bent bond/antiperiplanar hypothesis orbital model. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
The thermal rearrangements of naphthalene and azulene. An analysis through the bent bond and antiperiplanar hypothesis orbital model. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Deslongchamps P. The bent bond / antiperiplanar hypothesis and the thermal rearrangement of cyclopropyl halides and tosylates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Deslongchamps G, Deslongchamps P. Bent Bond/Antiperiplanar Hypothesis and the Chemical Reactivity of Annulenes. J Org Chem 2020; 85:8645-8655. [PMID: 32501012 DOI: 10.1021/acs.joc.0c01069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties and stereochemical reactivity of cyclobutadiene, benzene, cyclooctatetraene, and the [10]- to [14]annulenes can be uniformly rationalized through the bent bond/antiperiplanar hypothesis (BBAH). This new orbital model considers electronic delocalization between pyramidal diradical resonance structures and associated bent bonds, as it applies to aromatic, nonaromatic, and antiaromatic molecules.
Collapse
Affiliation(s)
- Ghislain Deslongchamps
- Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | | |
Collapse
|
10
|
Parent JF, Deslongchamps G, Deslongchamps P. Bent Bond/Antiperiplanar Hypothesis: Modulating the Reactivity and the Selectivity in the Glycosylation of Bicyclic Pyranoside Models. J Org Chem 2020; 85:4220-4236. [PMID: 32068401 DOI: 10.1021/acs.joc.9b03412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycosylation reactions were performed on a series of bicyclic C2-substituted pyranoside models to isolate and analyze factors that control the glycosylation stereoselectivities observed in carbohydrates. The bent bond/antiperiplanar hypothesis (BBAH) orbital model rationalizes all of these results by considering hyperconjugation interactions between groups at C2 and the two τ bonds (bent bonds) of oxocarbenium ion intermediates formed under the glycosylation conditions. According to the BBAH, nucleophiles add to oxocarbenium intermediates by SN2-like antiperiplanar displacement of the weaker of their two τ bonds.
Collapse
|
11
|
Yan Z, Zhao C, Gong J, Yang Z. Asymmetric Total Synthesis of (−)-Guignardones A and B. Org Lett 2020; 22:1644-1647. [DOI: 10.1021/acs.orglett.0c00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Yan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunbo Zhao
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianxian Gong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Parent JF, Bertrand X, Deslongchamps G, Deslongchamps P. Applying the Bent Bond/Antiperiplanar Hypothesis to the Stereoselective Glycosylation of Bicyclic Furanosides. J Org Chem 2020; 85:758-773. [PMID: 31820643 DOI: 10.1021/acs.joc.9b02791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glycosylation stereoselectivities for a series of bicyclic furanoside models have been carried out in the presence of weak nucleophiles. These results were analyzed through the bent bond/antiperiplanar hypothesis (BBAH) orbital model to test its validity. According to the BBAH, incoming nucleophiles displace one of the two bent bonds of bicyclic oxocarbenium ion intermediates in an antiperiplanar fashion. The glycosylation stereoselectivity is then governed by the displacement of the weaker bent bond as determined by the presence of electron-withdrawing or -donating substituents at C2. Overall, the BBAH analysis expands Woerpel's "inside/outside attack" glycosylation model by considering the stereoelectronic influence of neighboring electron-withdrawing and -donating groups on the nucleophilic addition to oxocarbenium ion intermediates.
Collapse
Affiliation(s)
| | - Xavier Bertrand
- Département de Chimie , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Ghislain Deslongchamps
- Department of Chemistry , University of New Brunswick , Fredericton , NB E3B 5A3 , Canada
| | | |
Collapse
|
13
|
Deslongchamps G, Deslongchamps P. Thermal rearrangement of optically active tetradeuterated 2-methoxymethyl-methylenecyclopropane and the bent bond/antiperiplanar hypothesis. Org Biomol Chem 2019; 17:7007-7012. [PMID: 31282912 DOI: 10.1039/c9ob01030k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thermolysis of an optically active tetradeuterated 2-methoxymethyl methylenecyclopropane produces a specific ratio of eight possible rearrangement stereoisomers. Despite numerous efforts, this reaction and other similar transformations have defied mechanistic interpretation until now. The direct application of the bent bond/antiperiplanar hypothesis (BBAH) to this reaction produces a mechanistic model that rationalizes all the observed reaction kinetics and products. The BBAH dictates that allyl diradical intermediates, produced during methylenecyclopropane thermolysis, retain pyramidal character due to antiperiplanar delocalization into their respective bent bond.
Collapse
Affiliation(s)
- Ghislain Deslongchamps
- Department of Chemistry, University of New Brunswick, P. O. Box 4400, Fredericton, NB E3B 5A3, Canada.
| | | |
Collapse
|
14
|
Hansen T, Lebedel L, Remmerswaal WA, van der Vorm S, Wander DPA, Somers M, Overkleeft HS, Filippov DV, Désiré J, Mingot A, Bleriot Y, van der Marel GA, Thibaudeau S, Codée JDC. Defining the S N1 Side of Glycosylation Reactions: Stereoselectivity of Glycopyranosyl Cations. ACS CENTRAL SCIENCE 2019; 5:781-788. [PMID: 31139714 PMCID: PMC6535769 DOI: 10.1021/acscentsci.9b00042] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 05/12/2023]
Abstract
The broad application of well-defined synthetic oligosaccharides in glycobiology and glycobiotechnology is largely hampered by the lack of sufficient amounts of synthetic carbohydrate specimens. Insufficient knowledge of the glycosylation reaction mechanism thwarts the routine assembly of these materials. Glycosyl cations are key reactive intermediates in the glycosylation reaction, but their high reactivity and fleeting nature have precluded the determination of clear structure-reactivity-stereoselectivity principles for these species. We report a combined experimental and computational method that connects the stereoselectivity of oxocarbenium ions to the full ensemble of conformations these species can adopt, mapped in conformational energy landscapes (CEL), in a quantitative manner. The detailed description of stereoselective SN1-type glycosylation reactions firmly establishes glycosyl cations as true reaction intermediates and will enable the generation of new stereoselective glycosylation methodology.
Collapse
Affiliation(s)
- Thomas Hansen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ludivine Lebedel
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Wouter A. Remmerswaal
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Stefan van der Vorm
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dennis P. A. Wander
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mark Somers
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jérôme Désiré
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Agnès Mingot
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Yves Bleriot
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | | | - Sebastien Thibaudeau
- UMR-CNRS
7285, IC2MP, Equipe “Synthèse Organique”, Université de Poitiers, 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- E-mail:
| |
Collapse
|
15
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
16
|
Deslongchamps G, Deslongchamps P. Bent Bonds and the Antiperiplanar Hypothesis. A Model To Account for Sigmatropic [1, n]-Hydrogen Shifts. J Org Chem 2018; 83:10383-10388. [PMID: 30041522 DOI: 10.1021/acs.joc.8b01472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bent bond/antiperiplanar hypothesis (BBAH) is used to propose a mechanism-based orbital model for the facial selectivity of sigmatropic hydrogen shifts under both thermal and photochemical conditions. The BBAH analysis of these concerted rearrangements invokes transient vibrationally excited singlet diradicals in both 4 n and 4 n+2 polyenes.
Collapse
Affiliation(s)
- Ghislain Deslongchamps
- Department of Chemistry , University of New Brunswick , Fredericton , New Brunswick E3B 5A3 , Canada
| | - Pierre Deslongchamps
- Département de Chimie , Université Laval , Québec City , Québec G1V 0A6 , Canada
| |
Collapse
|
17
|
Deslongchamps G, Deslongchamps P. Bent Bonds (τ) and the Antiperiplanar Hypothesis-The Chemistry of Cyclooctatetraene and Other C 8H 8 Isomers. J Org Chem 2018; 83:5751-5755. [PMID: 29715429 DOI: 10.1021/acs.joc.8b00809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bent bond/antiperiplanar hypothesis (BBAH) has been applied to the thermal rearrangements of cyclooctatetraene and related C8H8 isomers. This novel orbital model shows that pyramidal singlet diradical intermediates produced from thermal vibrational states of C8H8 isomers account for their chemical reactivity.
Collapse
Affiliation(s)
- Ghislain Deslongchamps
- Department of Chemistry , University of New Brunswick , Fredericton , NB , E3B 5A3 , Canada
| | | |
Collapse
|
18
|
Parent JF, Deslongchamps P. High-Temperature Isomerization of Benzenoid Polycyclic Aromatic Hydrocarbons. Analysis through the Bent Bond and Antiperiplanar Hypothesis Orbital Model. J Org Chem 2018; 83:3299-3304. [PMID: 29470083 DOI: 10.1021/acs.joc.8b00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L. T. Scott has discovered the 1,2-swapping of carbon and hydrogen atoms which is known to take place on benzenoid aromatics (up to ∼1000 °C range). For example, 13C-1-naphthalene is specifically converted to 13C-2-naphthalene, and there is evidence that this occurs through the formation of benzofulvene and a naphthalene-carbene intermediate. Application of the bent bond/antiperiplanar hypothesis leads to the postulate that higher in energy pyramidal singlet diradical intermediates can be used to propose a mechanism that rationalizes various atom rearrangements on benzenoid aromatics and related isomeric compounds.
Collapse
Affiliation(s)
- Jean-François Parent
- Département de Chimie, Faculté des Sciences et de Génie , 1045 avenue de la médecine , Université Laval , Québec , QC G1 V 0A6 , Canada
| | - Pierre Deslongchamps
- Département de Chimie, Faculté des Sciences et de Génie , 1045 avenue de la médecine , Université Laval , Québec , QC G1 V 0A6 , Canada
| |
Collapse
|
19
|
Amarasekara H, Dharuman S, Kato T, Crich D. Synthesis of Conformationally-Locked cis- and trans-Bicyclo[4.4.0] Mono-, Di-, and Trioxadecane Modifications of Galacto- and Glucopyranose; Experimental Limiting 3J H,H Coupling Constants for the Estimation of Carbohydrate Side Chain Populations and Beyond. J Org Chem 2018; 83:881-897. [PMID: 29241001 PMCID: PMC5775050 DOI: 10.1021/acs.joc.7b02891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hexopyranose side chains populate three staggered conformations, whose proportions can be determined from the three sets of ideal limiting 3JH5,H6R and 3JH5,H6S coupling constants in combination with the time-averaged experimental coupling constants. Literature values for the limiting coupling constants, obtained by the study of model compounds, the use of the Haasnoot-Altona and related equations, or quantum mechanical computations, can result in computed negative populations of one of the three ideal conformations. Such values arise from errors in the limiting coupling constants and/or from the population of nonideal conformers. We describe the synthesis and analysis of a series of cis- and trans-fused mono-, di-, and trioxabicyclo[4.4.0]octane-like compounds. Correction factors for the application of data from internal models (-CH(OR)-CH(OR)-) to terminal systems (-CH(OR)-CH2(OR)) are deduced from comparison of further models, and applied where necessary. Limiting coupling constants so-derived are applied to the side chain conformations of three model hexopyranosides, resulting in calculated conformer populations without negative values. Although, developed primarily for hexopyranose side chains, the limiting coupling constants are suitable, with the correction factors presented, for application to the side chains of higher carbon sugars and to conformation analysis of acyclic diols and their derivatives in a more general sense.
Collapse
Affiliation(s)
- Harsha Amarasekara
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Suresh Dharuman
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Takayuki Kato
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Crich
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|