1
|
Yamada A, Takei T, Kawakami T, Taniguchi Y, Sekiguchi K, Hojo H. Application of cysteinyl prolyl ester for the synthesis of cyclic peptides containing an RGD sequence and their biological activity measurement. Front Chem 2024; 12:1391678. [PMID: 38873405 PMCID: PMC11169864 DOI: 10.3389/fchem.2024.1391678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cysteinyl RGD-peptidyl cysteinyl prolyl esters, which have different configurations at the cysteine and proline residues, were synthesized by the solid-phase method and cyclized by the native chemical ligation reaction. Cyclization efficiently proceeded to give cyclic peptides, regardless of the difference in the configuration. The peptides were further derivatized to the corresponding desulfurized or methylated cyclic peptides at the Cys residues. The inhibition activity to αvβ6 integrin binding was then analyzed by ELISA. The results showed that the activity varied depending on the difference in the configuration and modification of the cysteinyl prolyl ester (CPC) moiety, demonstrating the usefulness of this method in the search for a good inhibitor of the protein-protein interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Lander A, Kong Y, Jin Y, Wu C, Luk LYP. Deciphering the Synthetic and Refolding Strategy of a Cysteine-Rich Domain in the Tumor Necrosis Factor Receptor (TNF-R) for Racemic Crystallography Analysis and d-Peptide Ligand Discovery. ACS BIO & MED CHEM AU 2024; 4:68-76. [PMID: 38404743 PMCID: PMC10885103 DOI: 10.1021/acsbiomedchemau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024]
Abstract
Many cell-surface receptors are promising targets for chemical synthesis because of their critical roles in disease development. This synthetic approach enables investigations by racemic protein crystallography and ligand discovery by mirror-image methodologies. However, due to their complex nature, the chemical synthesis of a receptor can be a significant challenge. Here, we describe the chemical synthesis and folding of a central, cysteine-rich domain of the cell-surface receptor tumor necrosis factor 1 which is integral to binding of the cytokine TNF-α, namely, TNFR-1 CRD2. Racemic protein crystallography at 1.4 Å confirmed that the native binding conformation was preserved, and TNFR-1 CRD2 maintained its capacity to bind to TNF-α (KD ≈ 7 nM). Encouraged by this discovery, we carried out mirror-image phage display using the enantiomeric receptor mimic and identified a d-peptide ligand for TNFR-1 CRD2 (KD = 1 μM). This work demonstrated that cysteine-rich domains, including the central domains, can be chemically synthesized and used as mimics for investigations.
Collapse
Affiliation(s)
- Alexander
J. Lander
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Yifu Kong
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Yi Jin
- Manchester
Institute of Biotechnology, University of
Manchester, Manchester M1 7DN, U.K.
| | - Chuanliu Wu
- Department
of Chemistry, College of Chemistry and Chemical Engineering, The MOE
Key Laboratory of Spectrochemical Analysis and Instrumentation, State
Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian Province 361005, China
| | - Louis Y. P. Luk
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
3
|
Trunschke S, Piemontese E, Fuchs O, Abboud S, Seitz O. Enhancing Auxiliary-Mediated Native Chemical Ligation at Challenging Junctions with Pyridine Scaffolds. Chemistry 2022; 28:e202202065. [PMID: 36097325 PMCID: PMC10091703 DOI: 10.1002/chem.202202065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 12/13/2022]
Abstract
To expand the scope of native chemical ligation (NCL) beyond reactions at cysteine, ligation auxiliaries are appended to the peptide N-terminus. After the introduction of a pyridine-containing auxiliary, which provided access to challenging junctions (proline or β-branched amino acids), we herein probe the role of the pyridine-ring nitrogen. We observed side reactions leading to preliminary auxiliary loss. We describe a new easy to attach β-mercapto-β-(4-methoxy-2-pyridinyl)-ethyl (MMPyE) auxiliary, which 1) has increased stability; 2) enables NCL at sterically encumbered junctions (e. g., Leu-Val); and 3) allows removal under mildly basic (pH 8.5) conditions was introduced. The synthesis of a 120 aa long peptide containing eight MUC5AC tandem repeats via ligation of two 60mers demonstrates the usefulness. Making use of hitherto unexplored NCL to tyrosine, the MMPyE auxiliary provided access to a head-to-tail-cyclized 21-mer peptide and a His6 -tagged hexaphosphorylated peptide comprising 6 heptapeptide repeats of the RNA polymerase II C-terminal domain.
Collapse
Affiliation(s)
- Sebastian Trunschke
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Olaf Fuchs
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Skander Abboud
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Loth K, Parisot N, Paquet F, Terrasson H, Sivignon C, Rahioui I, Ribeiro Lopes M, Gaget K, Duport G, Delmas AF, Aucagne V, Heddi A, Calevro F, da Silva P. Aphid BCR4 Structure and Activity Uncover a New Defensin Peptide Superfamily. Int J Mol Sci 2022; 23:ijms232012480. [PMID: 36293341 PMCID: PMC9604261 DOI: 10.3390/ijms232012480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
- UFR Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Hugo Terrasson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Isabelle Rahioui
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Karen Gaget
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Gabrielle Duport
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Pedro da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Correspondence:
| |
Collapse
|
5
|
Miura T, Ishihara Y, Nakamuro T, Moritani S, Nagata Y, Murakami M. Synthesis, Structure, and Dynamics of Chiral Eight-Membered Cyclic Molecules with Thienylene and Cyclopropylene Units Alternately Connected. Chemistry 2021; 28:e202103962. [PMID: 34928539 DOI: 10.1002/chem.202103962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A rhodium(II)-catalyzed asymmetric cyclooligomerization of bifunctional monomers possessing triazolyl and vinyl groups at 2,3- and 3,4-positions on the thiophene ring is studied. Structurally interesting cyclic dimers in which thienylene and cyclopropylene units are alternately connected are obtained as the major components. The eight-membered rings in the center are non-planar and adopt a tub-shaped conformation. We also observe the phenomenon of racemization caused by a tub-to-tub ring-flipping, the activation energy of which is determined as 108 kJ mol -1 by electronic circular dichroism spectra measurement.
Collapse
Affiliation(s)
- Tomoya Miura
- Okayama University, Division of Applied Chemistry, Tsushimanaka 3-1-1, 700-8530, Okayama, JAPAN
| | - Yumi Ishihara
- Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Takayuki Nakamuro
- Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Shunsuke Moritani
- Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| | - Yuuya Nagata
- Hokkaido University, Institute for Chemical Reaction Design and Discovery, JAPAN
| | - Masahiro Murakami
- Kyoto University, Department of Synthetic Chemistry and Biological Chemistry, JAPAN
| |
Collapse
|
6
|
Abboud SA, Amoura M, Madinier J, Renoux B, Papot S, Piller V, Aucagne V. Enzyme‐Cleavable Linkers for Protein Chemical Synthesis through Solid‐Phase Ligations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Skander A. Abboud
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Jean‐Baptiste Madinier
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers UMR-CNRS 7285 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Véronique Piller
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire CNRS UPR 4301 Rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
7
|
Abboud SA, Amoura M, Madinier JB, Renoux B, Papot S, Piller V, Aucagne V. Enzyme-Cleavable Linkers for Protein Chemical Synthesis through Solid-Phase Ligations. Angew Chem Int Ed Engl 2021; 60:18612-18618. [PMID: 34097786 DOI: 10.1002/anie.202103768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The total synthesis of long proteins requires the assembly of multiple fragments through successive ligations. The need for intermediate purification steps is a strong limitation, particularly in terms of overall yield. One solution to this problem would be solid-supported chemical ligation (SPCL), for which a first peptide segment must be immobilized on a SPCL-compatible solid support through a linker that can be cleaved under very mild conditions to release the assembled protein. The cleavage of SPCL linkers has previously required chemical conditions sometimes incompatible with sensitive protein targets. Herein, we describe an alternative enzymatic approach to trigger cleavage under extremely mild and selective conditions. Optimization of the linker structure and use of a small enzyme able to diffuse into the solid support were key to the success of the strategy. We demonstrated its utility by the assembly of three peptide segments on the basis of native chemical ligation to afford a 15 kDa polypeptide.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Jean-Baptiste Madinier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Brigitte Renoux
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Sébastien Papot
- Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR-CNRS 7285, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Véronique Piller
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France
| |
Collapse
|
8
|
Abboud SA, Cisse EH, Doudeau M, Bénédetti H, Aucagne V. A straightforward methodology to overcome solubility challenges for N-terminal cysteinyl peptide segments used in native chemical ligation. Chem Sci 2021; 12:3194-3201. [PMID: 34164087 PMCID: PMC8179351 DOI: 10.1039/d0sc06001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
One of the main limitations encountered during the chemical synthesis of proteins through native chemical ligation (NCL) is the limited solubility of some of the peptide segments. The most commonly used solution to overcome this problem is to derivatize the segment with a temporary solubilizing tag. Conveniently, the tag can be introduced on the thioester segment in such a way that it is removed concomitantly with the NCL reaction. We herein describe a generalization of this approach to N-terminal cysteinyl segment counterparts, using a straightforward synthetic approach that can be easily automated from commercially available building blocks, and applied it to a well-known problematic target, SUMO-2.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - El Hadji Cisse
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Michel Doudeau
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301 Rue Charles Sadron 45071 Orléans Cedex 2 France
| |
Collapse
|
9
|
Abboud SA, Aucagne V. An optimized protocol for the synthesis of N-2-hydroxybenzyl-cysteine peptide crypto-thioesters. Org Biomol Chem 2020; 18:8199-8208. [PMID: 33034311 DOI: 10.1039/d0ob01737j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a robust upgraded synthetic protocol for the synthesis of N-Hnb-Cys crypto-thioester peptides, useful building blocks for segment-based chemical protein synthesis through native chemical ligation. We recently observed the formation of an isomeric co-product when using a different solid support than the originally-reported one, thus hampering the general applicability of the methodology. We undertook a systematic study to characterize this compound and identify the parameters favouring its formation. We show here that epimerization from l- to d-cysteine occurred during the key solid-supported reductive amination step. We also observed the formation of imidazolidinones by-products arising from incomplete reduction of the imine. Structural characterization combined with the deciphering of underlying reaction mechanisms allowed us to optimize conditions that abolished the formation of all these side-products.
Collapse
Affiliation(s)
- Skander A Abboud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans cedex 2, France.
| |
Collapse
|
10
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Serra G, Posada L, Hojo H. On-resin synthesis of cyclic peptides via tandem N-to-S acyl migration and intramolecular thiol additive-free native chemical ligation. Chem Commun (Camb) 2020; 56:956-959. [DOI: 10.1039/c9cc07783a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel methodology for the synthesis of cyclic peptides by on-resin intramolecular native chemical ligation (NCL) assisted by N-ethylcysteine using Fmoc/SPPS is described.
Collapse
Affiliation(s)
- Gloria Serra
- Química Farmacéutica
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Laura Posada
- Química Farmacéutica
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de la República
- Montevideo
| | - Hironobu Hojo
- Institute for Protein Research
- Osaka University
- Yamadaoka
- Suita-shi
- Japan
| |
Collapse
|
12
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
13
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
14
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Arbour CA, Belavek KJ, Tariq R, Mukherjee S, Tom JK, Isidro-Llobet A, Kopach ME, Stockdill JL. Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation. J Org Chem 2018; 84:1035-1041. [DOI: 10.1021/acs.joc.8b02418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christine A. Arbour
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kayla J. Belavek
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Rooha Tariq
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Subha Mukherjee
- Bristol-Myers Squibb, Chemical and Synthetic Development, New Brunswick, New Jersey 08903, United States
| | - Janine K. Tom
- Amgen, Inc., Pivotal Drug Substance Process Development, Thousand Oaks, California 91320, United States
| | | | | | - Jennifer L. Stockdill
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Gless BH, Olsen CA. Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. J Org Chem 2018; 83:10525-10534. [DOI: 10.1021/acs.joc.8b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bengt H. Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Bi S, Liu P, Ling B, Yuan X, Jiang Y. Mechanism of N-to-S acyl transfer of N-(2-hydroxybenzyl) cysteine derivatives and origin of phenol acceleration effect. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Fang GM, Chen XX, Yang QQ, Zhu LJ, Li NN, Yu HZ, Meng XM. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Shimodaira S, Takei T, Hojo H, Iwaoka M. Synthesis of selenocysteine-containing cyclic peptides via tandem N-to-S acyl migration and intramolecular selenocysteine-mediated native chemical ligation. Chem Commun (Camb) 2018; 54:11737-11740. [DOI: 10.1039/c8cc06805d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic selenocysteine-containing peptides were synthesized via one-pot tandem conversion of N-alkylcysteine-containing selenopeptides.
Collapse
Affiliation(s)
- Shingo Shimodaira
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| | - Toshiki Takei
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University
- Yamadaoka
- Suita-shi
- Osaka 565-0871
- Japan
| | - Michio Iwaoka
- Department of Chemistry
- School of Science
- Tokai University
- Kitakaname
- Hiratsuka-shi
| |
Collapse
|
20
|
Craik DJ, Lee MH, Rehm FBH, Tombling B, Doffek B, Peacock H. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds. Bioorg Med Chem 2017; 26:2727-2737. [PMID: 28818463 DOI: 10.1016/j.bmc.2017.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Owing to their exceptional stability and favourable pharmacokinetic properties, plant-derived cyclic peptides have recently attracted significant attention in the field of peptide-based drug design. This article describes the three major classes of ribosomally-synthesised plant peptides - the cyclotides, the PawS-derived peptides and the orbitides - and reviews their applications as leads or scaffolds in drug design. These ribosomally-produced peptides have a range of biological activities, including anti-HIV, cytotoxic and immunomodulatory activity. In addition, recent interest has focused on their use as scaffolds to stabilise bioactive peptide sequences, thereby enhancing their biopharmaceutical properties. There are now more than 30 published papers on such 'grafting' applications, most of which have been reported only in the last few years, and several such studies have reported in vivo activity of orally delivered cyclic peptides. In this article, we describe approaches to the synthesis of cyclic peptides and their pharmaceutically-grafted derivatives as well as outlining their biosynthetic routes. Finally, we describe possible bioproduction routes for pharmaceutically active cyclic peptides, involving plants and plant suspension cultures.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Meng-Han Lee
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Tombling
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Doffek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hayden Peacock
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Vishwanatha TM, Bergamaschi E, Dömling A. Sulfur-Switch Ugi Reaction for Macrocyclic Disulfide-Bridged Peptidomimetics. Org Lett 2017; 19:3195-3198. [PMID: 28581763 PMCID: PMC5477004 DOI: 10.1021/acs.orglett.7b01324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
A general
strategy is introduced for the efficient synthetic access
of disulfide linked artificial macrocycles via a Ugi four-component
reaction (U4CR) followed by oxidative cyclization. The double-mercapto
input is proposed for use in the Ugi reaction, thereby yielding all
six topologically possible combinations. The protocol is convergent
and short and enables the production of novel disulfide peptidomimetics
in a highly general fashion.
Collapse
Affiliation(s)
- Thimmalapura M Vishwanatha
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Enrico Bergamaschi
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen , A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
22
|
Wu Z, Cheng X, Hong H, Zhao X, Zhou Z. New potent and selective αvβ 3 integrin ligands: Macrocyclic peptides containing RGD motif synthesized by sortase A-mediated ligation. Bioorg Med Chem Lett 2017; 27:1911-1913. [PMID: 28351594 DOI: 10.1016/j.bmcl.2017.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022]
Abstract
Three 14-mer macrocyclic peptides 1-3 containing mono-, di- and tri-RGD structure motif were designed and synthesized by sortase A-mediated ligation in good yields. The results of in intro cell-based biological assays indicated that linear peptide 5 and macrocyclic peptide 1, containing di-RGD and mono-RGD motif respectively, showed remarkable potency and selectivity to αvβ3 integrin.
Collapse
Affiliation(s)
- Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|