1
|
Szeltner Z, Ferenc G, Juhász T, Kupihár Z, Váradi Z, Szüts D, Kovács L. Probing telomeric-like G4 structures with full or partial 2'-deoxy-5-hydroxyuridine substitutions. Biochimie 2023; 214:33-44. [PMID: 36707016 DOI: 10.1016/j.biochi.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Guanine quadruplexes (G4s) are stable four-stranded secondary DNA structures held together by noncanonical G-G base tetrads. We synthesised the nucleoside analogue 2'-deoxy-5-hydroxyuridine (H) and inserted its phosphoramidite into telomeric repeat-type model oligonucleotides. Full and partial substitutions were made, replacing all guanines in all the three tetrads of a three-tier G4 structure, or only in the putative upper, central, or lower tetrads. We characterised these modified structures using CD, UV absorbance spectroscopy, native gel studies, and a capture oligo-based G4 disruption kinetic assay. The strand separation activity of BLM helicase on these substituted structures was also investigated. Two of the partially H-substituted constructs adopted G4-like structures, but displayed lower thermal stabilities compared to unsubstituted G4. The construct modified in its central tetrad remained mostly denatured, but the possibility of a special structure for the fully replaced variant remained open. H substitutions did not interfere with the G4-resolving activity of BLM helicase, but its efficiency was highly influenced by construct topology and even more by the G4 ligand PhenDC3. Our results suggest that the H modification can be incorporated into G quadruplexes, but only at certain positions to maintain G4 stability. The destabilizing effect observed for 2'-deoxy-5-hydroxyuridine indicates that the cytosine deamination product 5-hydroxyuracil and its nucleoside counterpart in RNA (5-hydroxyuridine), might also be destabilizing in cellular DNA and RNA quadruplexes. The kinetic assay employed in this study can be generally employed for a fast comparison of the stabilities of various G4s either in their free or ligand-bound states.
Collapse
Affiliation(s)
- Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Györgyi Ferenc
- Nucleic Acid Synthesis Laboratory, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62, H-6726, Szeged, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary
| | - Zoltán Kupihár
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary
| | - Zoltán Váradi
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117, Budapest, Hungary.
| | - Lajos Kovács
- Department of Medicinal Chemistry, University of Szeged, Dom Tér 8, H-6720, Szeged, Hungary.
| |
Collapse
|
2
|
Kovács L. From Peptide Nucleic Acids to Supramolecular Structures of Nucleic Acid Derivatives. CHEM REC 2023; 23:e202200203. [PMID: 36251934 DOI: 10.1002/tcr.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Nucleic acids play a pivotal role in life processes. The endeavours to shed light on the essential properties of these intriguing building blocks led us to the synthesis of different analogues and the investigation of their properties. First various peptide nucleic acid monomers and oligomers have been synthesized, using an Fmoc/acyl protecting group strategy, and their properties studied. The serendipitous discovery of a side reaction of coupling agents led us to the elaboration of a peptide sequencing method. The capricious behaviour of guanine derivatives spurred the determination of their substitution pattern using 13 C, 15 N NMR, and mass spectrometric methods. The properties of guanines initiated the logical transition to the study of supramolecular systems composed of purine analogues. Thus, xanthine and uracil derivatives have been obtained and their supramolecular self-assembly properties scrutinized in gas, solid, and liquid states and at solid-liquid interfaces.
Collapse
Affiliation(s)
- Lajos Kovács
- University of Szeged, Albert Szent-Györgyi Medical School, Department of Medicinal Chemistry, H-6720, Szeged, Dóm tér 8, Hungary
| |
Collapse
|
3
|
Simultaneous detection of purine metabolites by membrane modified electrochemical sensors. ACTA CHIMICA SLOVACA 2022. [DOI: 10.2478/acs-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Purine metabolites are important for metabolic and cellular processes. Deregulation of purinergic signaling leads to pathological accumulation of purine degradation products in extracellular fluids and indicates various diseases. In clinical diagnosis at early stages of related diseases, accurate detection of Uric acid and Xanthine is of high importance. Electrochemical methods are fast, simple, sensitive, more convenient, and cost-effective compared to other analytical methods used in purine metabolites signaling. Electrochemical sensors are able to detect more compounds simultaneously. Modification of a glassy carbon electrode sensor with external protective membranes was used in this study to avoid unwanted signal interferences from analyte matrices. Polyvinyl alcohol, Chitosan, and Nafion membranes were selected for sensor modification to compare the electro-neutral, positive and negative charged setting of the Xanthine and Uric acid detection. All three membrane modified sensors showed adequate stability in the phosphate buffer solution after 5 min of incubation and are thus suitable for simultaneous detection of purine metabolites. The best results in anodic peak current response values were observed using the Nafion membrane modified glassy carbon electrode sensor. The approach reported here can be useful for the detection of purine metabolites from various matrices at early stages of clinical diagnosis.
Collapse
|
4
|
Milovanović B, Petković M, Popov I, Etinski M. Water-Mediated Interactions Enhance Alkaline Earth Cation Chelation in Neighboring Cavities of a Cytosine Quartet in the DNA Quadruplex. J Phys Chem B 2021; 125:11996-12005. [PMID: 34694801 DOI: 10.1021/acs.jpcb.1c05598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Larger Coulombic repulsion between divalent cations compared to the monovalent counterparts dictates the cation-cation distance in the central ion channel of quadruplexes. In this work, density functional theory and a continuum solvation model were employed to study bond energies of alkaline earth cations in adjacent cavities of the central ion channel. Four crystallized tetramolecular quadruplexes with various geometric constraints and structural motifs available in the Protein Data Bank were examined in order to understand how the cation binding affinities could be increased in aqueous solution. A cytosine quartet sandwiched between guanine quartets has a larger bond energy of the second alkaline earth cation in comparison with guanine and uracil quartets. Four highly conserved hydrogen-bonded water molecules in the center of the cytosine quartet are responsible for a higher electrostatic interaction with the cations in comparison with guanines' carbonyl groups. The reported findings are valuable for the design of synthetic quadruplexes templated with divalent cations for optoelectronic applications.
Collapse
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 11000 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 11000 Belgrade, Serbia
| | - Igor Popov
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.,Institut of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Watts TA, Price LS, Price SL, Niederberger SM, Bertke JA, Swift JA. The Crystal Structure of 5‐Aminouracil and the Ambiguity of Alternative Polymorphs. Isr J Chem 2021. [DOI: 10.1002/ijch.202100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taylor A. Watts
- Department of Chemistry Georgetown University 37th and O Sts NW Washington DC 20057–1227 USA
| | - Louise S. Price
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Sarah L. Price
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - Sara M. Niederberger
- Department of Chemistry Georgetown University 37th and O Sts NW Washington DC 20057–1227 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University 37th and O Sts NW Washington DC 20057–1227 USA
| | - Jennifer A. Swift
- Department of Chemistry Georgetown University 37th and O Sts NW Washington DC 20057–1227 USA
| |
Collapse
|
6
|
Hognon C, Gebus A, Barone G, Monari A. Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes. Antioxidants (Basel) 2019; 8:antiox8090337. [PMID: 31443537 PMCID: PMC6770428 DOI: 10.3390/antiox8090337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 01/23/2023] Open
Abstract
By using all atom molecular dynamics simulations, we studied the behavior of human DNA telomere sequences in guanine quadruplex (G4) conformation and in the presence of oxidative lesions, namely abasic sites. In particular, we evidenced that while removing one guanine base induces a significant alteration and destabilization of the involved leaflet, human telomere oligomers tend, in most cases, to maintain at least a partial quadruplex structure, eventually by replacing the empty site with undamaged guanines of different leaflets. This study shows that (i) the disruption of the quadruplex leaflets induces the release of at least one of the potassium cations embedded in the quadruplex channel and that (ii) the electrostatic interactions of the DNA sequence with the aforementioned cations are fundamental to the maintenance of the global quadruplex structure.
Collapse
Affiliation(s)
- Cecilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Adrien Gebus
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France
| | - Giampaolo Barone
- Department of Biological, Chenical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
7
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|