1
|
Li C, Yan B, Xue T, Tao R, Song Z, Qi F, Zhang F, Lei X, Wang Y. Electron transfer degradation of ciprofloxacin by peroxydisulfate intercalated MgAlFe-layered double hydroxides: Roles of laminate structure and interlayer peroxydisulfate. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Garrido M, Barrejón M, Berrocal JA, Syrgiannis Z, Prato M. Polyaromatic cores for the exfoliation of popular 2D materials. NANOSCALE 2022; 14:8986-8994. [PMID: 35699137 DOI: 10.1039/d2nr00894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) nanomaterials have attracted interest from the scientific community due to their unique properties. The production of these materials has been carried out by diverse methodologies, the liquid phase exfoliation being the most promising one due to its simplicity and potential scalability. The use of several stabilizers allows to obtain dispersions of these 2D nanomaterials in solvents with low boiling points. Herein we describe a general exfoliation method for different 2D materials employing a biphasic water/dichloromethane system and two different (poly)aromatic hydrocarbons (PAHs). This method allows us to obtain dispersions of the exfoliated 2D materials with high concentrations in the organic solvent. Due to the low boiling point of dichloromethane, and therefore its easy removal, the obtained dispersions can be employed as additives for different composites. We corroborate that the exfoliation efficiency is improved due to the π-π and van der Waals interactions between the PAHs and the layers of the 2D materials.
Collapse
Affiliation(s)
- Marina Garrido
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
| | - Myriam Barrejón
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
3
|
Brill AR, Kuntumalla MK, de Ruiter G, Koren E. Formation of Highly Ordered Self-Assembled Monolayers on Two-Dimensional Materials via Noncovalent Functionalization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33941-33949. [PMID: 32589020 DOI: 10.1021/acsami.0c09722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functionalized two-dimensional materials (2DMs) are attracting much attention due to their promising applications in nanoscale devices. Producing continuous and homogeneous surface assemblies with a high degree of order has been challenging. In this work, we demonstrate that by noncovalently self-assembling molecular platforms on 2DMs, high-quality and highly ordered monolayers can be generated. The high degree of order and uniformity of the self-assembled monolayer layers were confirmed by a variety of analytic techniques including time-of-flight secondary ion mass spectrometry, scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. Furthermore, by selectively enhancing the molecular vibrations of the molecular platform, via a combination of graphene-enhanced Raman spectroscopy (GERS) and surface-enhanced Raman spectroscopy (SERS), we were able to determine the orientation of self-assembled molecular platforms with respect to the surface normal. The selective enhancement of the vibrational modes occurs by taking advantage of the distance dependence of the Raman enhancement either by the graphene surface (GERS) or the silver nanoparticules (SERS) that are located on top of the self-assembled monolayer.
Collapse
Affiliation(s)
- Adam R Brill
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
- Faculty of Materials Science and Engineering, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mohan Kumar Kuntumalla
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Elad Koren
- Faculty of Materials Science and Engineering, Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
4
|
Volland M, Lennert A, Roth A, Ince M, Torres T, Guldi DM. Azulenocyanines immobilized on graphene; on the way to panchromatic absorption and efficient DSSC blocking layers. NANOSCALE 2019; 11:10709-10715. [PMID: 31140533 DOI: 10.1039/c9nr02300c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, a novel electron donor-acceptor hybrid consisting of a NIR absorbing azulenocyanine as an electron donor and few-layer graphene as an electron acceptor was prepared. The extended aromatic core of azulenocyanine (1) assists in the exfoliation of graphite and allows the formation of a very high-quality few-layer graphene azulenocyanine hybrid system (2). The formation of a stable azulenocyanine/graphene hybrid was verified by means of an arsenal of spectroscopic and microscopic techniques. Notable is the fact that the absorption spectrum recorded for 1 and likewise that for 2 covers large portions of the solar spectrum, that is, from the UV through the visible to the NIR region. In light of the latter, we incorporated 1 as well as 2 as a photosensitizer in dye sensitized solar cells (DSSCs) and probed their light harvesting. Besides an increase in the photovoltaic conversion efficiency we focused on the stability of DSSCs by preventing charge recombination between FTO and the liquid electrolyte. We used 2 as a blocking layer and in comparison with a TiCl4 pretreated blocking layer a superior conversion efficiency was realized.
Collapse
Affiliation(s)
- Michel Volland
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Volland M, Zhou P, Wibmer L, Häner R, Decurtins S, Liu SX, Guldi DM. Nanographene favors electronic interactions with an electron acceptor rather than an electron donor in a planar fused push-pull conjugate. NANOSCALE 2019; 11:1437-1441. [PMID: 30608494 DOI: 10.1039/c8nr06961a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A combination of a preexfoliated nanographene (NG) dispersion and fused electron donor-acceptor tetrathiafulvalene-perylenediimide (TTF-PDI) results in a noncovalent functionalization of NG. Such novel types of nanohybrids were characterized by complementary spectroscopic and microscopic techniques. The design strategy of the chromophoric and electroactive molecular conjugate renders a large and planar π-extended system with a distinct localization of electron-rich and electron-poor parts at either end of the molecular conjugate. Within the in situ formed nanohybrid, the conjugate was found to couple electronically with NG preferentially through the electron accepting PDI rather than the electron donating TTF and to form the one-electron reduced form of PDI, which corresponds to p-doping of graphene.
Collapse
Affiliation(s)
- Michel Volland
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|