Guo Z, Zhang M, Li J. Modifying luteolin's algicidal effect on Microcystis by virgin and diversely-aged polystyrene microplastics: Unveiling novel mechanisms through microalgal adaptive strategies.
ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024;
356:124237. [PMID:
38801882 DOI:
10.1016/j.envpol.2024.124237]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Luteolin has shown great potential in inhibiting Microcystis-dominated cyanobacterial blooms. However, widespread microplastics (MPs) in natural aquatic systems often serve as substrates for cyanobacterial growth, which could impact cyanobacterial resistance to external stresses and interfere with luteolin's algicidal effect. This study explored the influence of virgin and diversely-aged polystyrene microplastics (PS-MPs) on inhibitory effect of luteolin on Microcystis growth and its microcystins (MCs) production/release. Moreover, the underlying mechanisms were also revealed by jointly analyzing SEM image, antioxidant response, exopolymeric substances (EPSs) production, and functional gene expression. Results suggested that 0.5, 5, and 50 mg/L virgin and diversely-aged PS-MPs almost weakened growth inhibition and oxidative damage of two doses of luteolin against Microcystisby stimulating its EPSs production and inducing self-aggregation of Microcystis cells and/or hetero-aggregation between Microcystis cells and PS-MPs. Compared to virgin PS-MPs, photo-aged PS-MPs possessed rougher flaky surfaces, and hydrothermal-aged PS-MPs showed internal cracking. These characteristics led to greater stimulation of EPS production and exhibited more significant protective effects on Microcystis. Notably, PS-MPs also decreased MCs content in aqueous phase, likely because they adsorbed some MCs. Such toxigenic hetero-aggregates formed by MCs, MPs, and Microcystis cells would directly poison grazing organisms that consume them and create more pathways for MCs into food web, posing greater eco-risks. This is the first study to clarify the influence and mechanisms of virgin and diversely-aged MPs on allelopathic algicidal effects from the perspective of microalgal inherent adaptive strategies.
Collapse