1
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
2
|
Cheng J, Yu Q, Tu K, Wang J, Zhang L, Cheng Z. Hierarchical Self-Assembly of Triphilic Main-Chain-Type Semifluorinated Alternating Graft Copolymers in Aqueous Solution. Macromol Rapid Commun 2023; 44:e2200570. [PMID: 36104160 DOI: 10.1002/marc.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Fluorinated copolymers can self-assemble in solution and form micelles with rare properties due to the peculiar behavior of fluorinated groups. However, the process description of the self-assembly is still largely phenomenological and difficult to explain due to the tendency of the fluorinated segments to segregate from both the hydrophilic and lipophilic segments, which can result in various morphologies. Herein, the controlled formation of ellipsoidal micelles, disklike micelles, and sheets by hierarchical self-assembly of triphilic main-chain-type semifluorinated alternating graft copolymers (AB)n A-g-mOEG is presented (where A represents unit of α,ω-diiodoperfluoroalkane, B represents the unit of α,ω-unconjugated diene, and mOEG represents methoxy oligo(ethylene glycol)), which are synthesized by step transfer-addition and radical-termination (START) polymerization and azide-alkyne click chemistry. Furthermore, the possible self-assembly mechanism of these micron-level aggregates is proposed, which is ascribed to the hierarchical self-assembly, crowding effect of hydrophilic chains and the interfacial tension between the fluoroalkane and alkane segments. This study can provide a facile and highly efficient approach to the synthesis of main-chain-type fluorinated graft copolymers and expand the research field for the solution self-assembly of fluorinated copolymers.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Shi XJ, Liu Z, Xie YC, Xu M, He XH. Homopolypeptide Vesicles Triggered by Side-Chain Hydration. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Nishimura T, Hatatani Y, Ando M, Sasaki Y, Akiyoshi K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem Sci 2022; 13:5243-5251. [PMID: 35655565 PMCID: PMC9093194 DOI: 10.1039/d2sc01674e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nanodiscs have attracted considerable attention as structural scaffolds for membrane-protein research and as biomaterials in e.g. drug-delivery systems. However, conventional disc-fabrication methods are usually laborious, and disc fabrication via the self-assembly of amphiphiles is difficult. Herein, we report the formation of polymer nanodiscs based on the self-assembly of amphiphilic graft copolymers by adjusting the persistence length of the main chain. Amphiphilic graft copolymers with a series of different main-chain persistence lengths were prepared and these formed, depending on the persistence length, either rods, discs, or vesicles. Notably, polymer nanodiscs were formed upon heating a chilled polymer solution without the need for any additives, and the thus obtained nanodiscs were used to solubilize a membrane protein during cell-free protein synthesis. Given the simplicity of this disc-fabrication method and the ability of these discs to solubilize membrane proteins, this study considerably expands the fundamental and practical scope of graft-copolymer nanodiscs and demonstrates their utility as tools for studying the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University 3-15-1, Tokida Ueda Nagano 386-8567 Japan
| | - Yusuke Hatatani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University Shogoin Kawahara-cho, Sakyo-ku Kyoto 606-8507 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
5
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Shu W, Liu Z, Xie Y, Shi X, Qi S, Xu M, He X. Regulating the morphology and size of homopolypeptide self-assemblies via selective solvents. SOFT MATTER 2021; 17:7118-7123. [PMID: 34259281 DOI: 10.1039/d1sm00679g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It remains a great challenge to control the morphology and size of self-assembled homopolypeptide aggregates. In this work, rod-like micelles including spindles and cylinders were prepared by a solution self-assembly of poly(γ-benzyl-l-glutamate) (PBLG) homopolypeptides with different degrees of polymerization, in which their size was controlled precisely by tuning the ratio of water/methanol in selective cosolvents. The length of the rod-like micelles increased with an increasing amount of methanol in the selective cosolvents, which was confirmed using the combination of SEM, TEM and AFM. The self-assembly mechanism of PBLG in selective cosolvents was investigated by using complementary Fourier transform infrared (FT-IR), circular dichroism (CD) and low-field NMR analyses. It was found that the shrinkage and swelling of PBLG chains play important roles in the self-assembly process. The obtained results may provide a guideline for the study of regulating the assembled aggregate sizes.
Collapse
Affiliation(s)
- Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Yangchun Xie
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Min Xu
- School of Physics and Electronic Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
7
|
Kim T, Park JY, Hwang J, Seo G, Kim Y. Supramolecular Two-Dimensional Systems and Their Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002405. [PMID: 32989841 DOI: 10.1002/adma.202002405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Various biological systems rely on the supramolecular assembly of biomolecules through noncovalent bonds for performing sophisticated functions. In particular, cell membranes, which are 2D structures in biological systems, have various characteristics such as a large surface, flexibility, and molecule-recognition ability. Supramolecular 2D materials based on biological systems provide a novel perspective for the development of functional 2D materials. The physical and chemical properties of 2D structures, attributed to their large surface area, can enhance the sensitivity of the detection of target molecules, molecular loading, and bioconjugation efficiency, suggesting the potential utility of functional 2D materials as candidates for biological systems. Although several types of studies on supramolecular 2D materials have been reported, supramolecular biofunctional 2D materials have not been reviewed previously. In this regard, the current advances in 2D material development using molecular assembly are discussed with respect to the rational design of self-assembling aromatic amphiphiles, the formation of 2D structures, and the biological applications of functional 2D materials.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiwon Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gunhee Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
9
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020; 59:14281-14285. [DOI: 10.1002/anie.202004102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
10
|
Drug carrier systems made from self-assembled glyco-nanoparticles of maltoheptaose-b-polyisoprene enhanced the distribution and activity of curcumin against cancer cells. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
He X, Wu J, Gao C. Novel amphiphilic graft block azobenzene-containing copolymer with polypeptide block: synthesis, self-assembly and photo-responsive behavior. RSC Adv 2020; 10:5747-5757. [PMID: 35497441 PMCID: PMC9049285 DOI: 10.1039/c9ra10351a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Well-defined amphiphilic graft block azobenzene-containing copolymer with polypeptide block was synthesized via a combination of copper-mediated atom transfer radical polymerization (ATRP), ring-opening polymerization and click reaction. The alkyne-terminated poly[6-(4-methoxy-azobenzene-4′-oxy)hexyl methacrylate] (PAzoMA) was synthesized by ATRP with a bromine-containing alkyne bifunctional initiator, and the azido-terminated poly(γ-2-chloroethyl-l-glutamate) (PCELG) was synthesized by ROP of γ-2-chloroethyl-l-glutamate-N-carboxyanhydride (CELG-NCA), then the two homopolymers were conjugated by click reaction to afford block azobenzene-containing copolymer PAzoMA-b-PCELG. The chloro groups in PCELG block were transformed into azido groups via azide reactions, and the alkyne-terminated MPEG was grafted to the polypeptide block to afford the final product PAzoMA-b-poly((l-glutamate)-graft-methoxy poly(ethylene glycol)) (PAzoMA-b-(PELG-g-MPEG)) by click reaction. Giant vesicles (micrometer size) were obtained from the amphiphilic graft block copolymer PAzoMA-b-(PELG-g-MPEG) through a solution self-assembly due to the rigid PAzoMA chains and polypeptide chains with the α-helical structure. The investigation of the photo-isomerization behavior of PAzoMA-b-(PELG-g-MPEG) in solution and in vesicular solution showed trans–cis isomerization in solution was quicker than that in vesicular solution and azobenzene J-aggregates in the vesicle solution were only observed. The formation mechanisms of the vesicles were also explored. The research results may provide guidelines for the study of complex copolymers containing different types of rigid chains. Giant vesicles (micrometer size) were prepared from novel amphiphilic graft block azobenzene-containing copolymer with polypeptide block synthesized via a combination of ATRP, ROP and click reaction.![]()
Collapse
Affiliation(s)
- Xiaohua He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Jianxiang Wu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Chunyan Gao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
12
|
Zhu X, Zhang J, Miao C, Li S, Zhao Y. Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers. Polym Chem 2020. [DOI: 10.1039/d0py00245c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive miktobrush-coil terpolymers can exhibit unique physical properties and hierarchical self-assembly behaviors dependent on composition, concentration and external stimuli.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Siyu Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
13
|
Zhu H, Cui Y, Wang J, Qiu H. Formation of disk-like micelles of triblock copolymers in frustrating solvents. RSC Adv 2019; 9:9443-9448. [PMID: 35520696 PMCID: PMC9062166 DOI: 10.1039/c9ra01145e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 12/28/2022] Open
Abstract
Coil–coil block copolymers rarely self-assemble into flat low-curvature micelles due to the lack of proper interchain association. Here, we report a facile route to prepare disk-like micelles through the self-assembly of amphiphilic polystyrene-b-polybutadiene-b-poly(2-vinylpyridine) triblock copolymers in a mixture of acetone and cyclohexane, which shows distinct selectivity towards the PS, PB and P2VP blocks. Subtle solvation/aggregation of these blocks in this frustrating solvent system provides access to low-curvature micellar structures, and thus favors the formation of uniform disk-like micelles. Further variation of the volume ratio of the mixed solvents also leads to the emergence of other interesting morphologies, including disk arrays, disk clusters and perforated disk-like micelles. This work provides a complementary insight into the solution self-assembly of block copolymers in a view of selective solvents and demonstrates a distinctive pathway to unconventional micellar nanostructures through the use of complex solvent systems. Self-assembly of amphiphilic triblock copolymers in a frustrating solvent system leads to the formation of various low-curvature micellar structures.![]()
Collapse
Affiliation(s)
- Hongyan Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Cui
- School of Chemistry and Chemical Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China .,Shanghai Advanced Research Institute, Zhangjiang Lab, Chinese Academy of Sciences Shanghai 201204 China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
14
|
Machado CA, Smith IR, Savin DA. Self-Assembly of Oligo- and Polypeptide-Based Amphiphiles: Recent Advances and Future Possibilities. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Craig A. Machado
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ian R. Smith
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Brendel JC, Catrouillet S, Sanchis J, Jolliffe KA, Perrier S. Shaping block copolymer micelles by supramolecular polymerization: making ‘tubisomes’. Polym Chem 2019. [DOI: 10.1039/c9py00179d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to the respective block copolymers, amphiphilic cyclic peptide conjugates self-assemble into cylindrical micelles independent of the polymer compositions.
Collapse
Affiliation(s)
- Johannes C. Brendel
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | | | - Joaquin Sanchis
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
16
|
|
17
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Magurudeniya HD, Ringstrand BS, Seifert S, Firestone MA. Reversible hierarchical structure induced by solvation and temperature modulation in an ionic liquid-based random bottlebrush copolymer. Polym Chem 2018. [DOI: 10.1039/c8py01218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Discoidal bottlebrush poly(ionic liquid)s are reversibly stacked into 1-D rod like assembles by temperature changes.
Collapse
Affiliation(s)
- Harsha D. Magurudeniya
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Bryan S. Ringstrand
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| | - Sönke Seifert
- X-ray Sciences Division
- Argonne National Laboratory
- Lemont
- USA 60439
| | - Millicent A. Firestone
- Materials Physics & Applications Division
- Los Alamos National Laboratory
- Los Alamos
- USA 87545
| |
Collapse
|
19
|
Truong NP, Quinn JF, Anastasaki A, Rolland M, Vu MN, Haddleton DM, Whittaker MR, Davis TP. Surfactant-free RAFT emulsion polymerization using a novel biocompatible thermoresponsive polymer. Polym Chem 2017. [DOI: 10.1039/c6py02158a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile, high-scale, and versatile technique to prepare biocompatible nanoparticles with tailorable properties from thermoresponsive macro-CTAs and macro-stabilizers.
Collapse
Affiliation(s)
- Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Athina Anastasaki
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Manon Rolland
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Mai N. Vu
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - David M. Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
20
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|