1
|
King O, Hofmann BJ, Boakye-Smith AE, Managh AJ, Stringer T, Lord RM. Fluorinated N-Heterocyclic Carbene Silver(I) Complexes with High Cancer Cell Selectivity. Organometallics 2024; 43:2662-2673. [PMID: 39483131 PMCID: PMC11523213 DOI: 10.1021/acs.organomet.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
This work presents the synthesis of five new functionalized (benz)imidazolium N-heterocyclic (NHC) ligands (L) and four new (benz)imidazole silver(I) NHC (Ag(I)-NHC) complexes of mononuclear [Ag(L)2](PF6) or binuclear [Ag2(L)2](PF6)2 type. The complexes have been fully characterized, including single crystal X-ray diffraction of three new structures. The complexes and their corresponding free NHC ligands have been screened against breast cancer and noncancerous cell lines, showing the mononuclear benzimidazole complex has the highest activity, while the binuclear benzimidazole complex has the highest cancer cell selectivity. The silver uptake was measured by ICP-MS and highlights a strong link between cytotoxicity and cellular uptake. DNA interaction studies, molecular docking, and evaluation of reactive oxygen species (ROS) have been conducted for the most promising complexes to identify modes of action. Overall, the binuclear benzimidazole complex is the most selective and promising candidate against the MDA-MD-231 (breast cancer) cell line and has potential to be developed for treatment of late-stage breast cancers.
Collapse
Affiliation(s)
- Oliver
S. King
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk NR1 1GE, United Kingdom
| | - Benjamin J. Hofmann
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk NR1 1GE, United Kingdom
| | - Aran E. Boakye-Smith
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk NR1 1GE, United Kingdom
| | - Amy J. Managh
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Tameryn Stringer
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk NR1 1GE, United Kingdom
| | - Rianne M. Lord
- School
of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk NR1 1GE, United Kingdom
| |
Collapse
|
2
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Xiao J, Yin M, Yang M, Ren J, Liu C, Lian J, Lu X, Jiang Y, Yao Y, Luo J. Lipase and pH-responsive diblock copolymers featuring fluorocarbon and carboxyl betaine for methicillin-resistant staphylococcus aureus infections. J Control Release 2024; 369:39-52. [PMID: 38508523 DOI: 10.1016/j.jconrel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.
Collapse
Affiliation(s)
- Jipeng Xiao
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meihui Yin
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinghang Ren
- CCTEG Xi'an Research Institute (Group) Co., Ltd, Xi'an 710000, Shanxi, China
| | - Cheng Liu
- CCTEG Xi'an Research Institute (Group) Co., Ltd, Xi'an 710000, Shanxi, China.
| | - Jiali Lian
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xinyu Lu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuchen Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianbin Luo
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
4
|
Xia Y, Liu K, Wang F, Xu Z, Wang Y, Zong R, Xu Y, Li P, Deng B, Xu M, Chen G. Self-Assembled Virus-Like Particle Vaccines via Fluorophilic Interactions Enable Infection Mimicry and Immune Protection. Adv Healthc Mater 2023; 12:e2301647. [PMID: 37703498 DOI: 10.1002/adhm.202301647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Influenza epidemics persistently threaten global health. Vaccines based on virus-like particles (VLPs), which resemble the native conformation of viruses, have emerged as vaccine candidates. However, the production of VLPs via genetic engineering remains constrained by challenges such as low yields, high costs, and being time consuming. In this study, a novel VLP platform is developed that could mimic infection and confer influenza protection through fluorination-driven self-assembly. The VLPs closely mimick the key steps in viral infection including dendritic cell (DC) attachment and pH-responsive endo-lysosomal escape, which enhances DC maturation and antigen cross-presentation. It is also observed that the VLPs migrate from the injection site to the draining lymph nodes efficiently. Immunization with VLPs triggers both Th1 and Th2 cellular responses, thereby inducing an improved CD8+ T cell response along with strong antigen-specific antibody responses. In several infected mouse models, VLP vaccines ameliorate weight loss, lung virus titers, pulmonary pathologies, and confer full protection against H1N1, H6N2, H9N2, and mixed influenza viruses. Therefore, the results support the potential of VLPs as an effective influenza vaccine with improved immune potency against infection. A methodology to generate VLPs based on fluorophilic interactions, which can be a general approach for development of pathogenic VLPs, is reported.
Collapse
Affiliation(s)
- Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Kai Liu
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Fei Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zhou Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yuesheng Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Rongling Zong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Yemin Xu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266024, P. R. China
| |
Collapse
|
5
|
Abstract
INTRODUCTION Gene delivery vectors are a crucial determinant for gene therapeutic efficacy. Usually, it is necessary to use an excess of cationic vectors to achieve better transfection efficiency. However, it will cause severe cytotoxicity. In addition, cationic vectors are not resistant to serum, suffering from reduced transfection efficiency by forming large aggregates. Therefore, there is an urgent need to develop optimized gene delivery vectors. Recently, fluorination of vectors has been extensively applied to increase the gene delivery performance because of the unique properties of both hydrophobicity and lipophobicity, and chemical and biological inertness. AREAS COVERED This review will discuss the fluorophilic effects that impact gene delivery efficiency, and chemical modification approaches for fluorination. Next, recent advances and applications of fluorinated polymeric and lipidic vectors in gene therapy and gene editing are summarized. EXPERT OPINION Fluorinated vectors are a promising candidate for gene delivery. However, it still needs further studies to obtain pure and well-defined fluorinated polymers, guarantee the biosafety, and clarify the detailed mechanism. Apart from the improvements in gene delivery, exploiting other versatility of fluorinated vectors, such as oxygen-carrying ability, high affinity with fluorine-containing drugs, and imaging property upon introducing 19F, will further facilitate their applications in gene therapy.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhan Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Wu P, Zhang H, Yin Y, Sun M, Mao S, Chen H, Deng Y, Chen S, Li S, Sun B. Engineered EGCG-Containing Biomimetic Nanoassemblies as Effective Delivery Platform for Enhanced Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105894. [PMID: 35486032 PMCID: PMC9131592 DOI: 10.1002/advs.202105894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/06/2022] [Indexed: 06/07/2023]
Abstract
Nano-based immunotherapy of therapeutic biomolecules is attractive but tremendously hampered by the poor delivery efficiency. This study reports a novel delivery system of fluorinated-coordinative-epigallocatechin gallate (EGCG), referring as FEGCG/Zn, through the integration of fluorination and zinc ions (Zn2+ ) into EGCG. The robust therapeutics of FEGCG/Zn are measured in terms of the regulating effect on programmed cell death ligand 1 (PD-L1), the effective delivery of diverse biomolecules, and the hitchhiking ability using living cells. Taking small interfering RNA of PD-L1 (siPD-L1) and erythrocytes as an example, the fabricated biomimetic system achieves excellent siPD-L1 delivery and further improves siPD-L1 accumulation in tumors. Finally, the combination of FEGCG/Zn and siPD-L1 promotes antitumor immunotherapy through alleviation of T cells exhaustion by regulating PD-L1 expression in tumor cells. The results demonstrate that FEGCG/Zn substantially regulates PD-L1 expression and improves immune-biomolecule delivery by forming biomimetic nanoassemblies, offering a versatile platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Pengkai Wu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Haitian Zhang
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Yin Yin
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Meiling Sun
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Shuai Mao
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Huihui Chen
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
| | - Yexuan Deng
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease StudyDepartment of EndocrinologyNanjing Drum Tower Hospitaland Model Animal Research CenterSchool of MedicineNanjing UniversityNanjing210008P. R. China
| | - Shuo Li
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu Province210029P. R. China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjingJiangsu Province210008P. R. China
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008P. R. China
| |
Collapse
|
7
|
Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022; 55:722-733. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytosolic delivery of biomolecules such as genes, proteins, and peptides is of great importance for biotherapy but usually limited by multiple barriers during the process. Cell membrane with high hydrophobic character is one of the representative biological barriers for cytosolic delivery. The introduction of hydrophobic ligands such as aliphatic lipids onto materials or biomolecules could improve their membrane permeability. However, these ligands are lipophilic and tend to interact with the phospholipids in the membrane as well as serum proteins, which may hinder efficient intracellular delivery. To solve this issue, our research group proposed the use of fluorous ligands with both hydrophobicity and lipophobicity as ideal alternatives to aliphatic lipids to promote cytosolic delivery.In our first attempt, fluorous ligands were conjugated onto cationic polymers to increase their gene delivery efficacy. The fluorination dramatically increased the gene delivery performance at low polymer doses. In addition, the strategy greatly improved the serum tolerance of cationic polymers, which is critical for efficient gene delivery in vivo. Besides serum tolerance, mechanism studies revealed that fluorination increases multiple steps such as cellular uptake and endosomal escape. Fluorination also allowed the assembly of low-molecular-weight polymers and achieved highly efficient gene delivery with minimal material toxicity. The method showed robust efficiency for polymers, including linear polymers, branched polymers, dendrimers, bola amphiphilies, and dendronized polymers.Besides gene delivery, fluorinated polymers were also used for intracellular protein delivery via a coassembly strategy. For this purpose, two lead fluoropolymers were screened from a library of amphiphilic materials. The fluoropolymers are greatly superior to their nonfluorinated analogues conjugated with aliphatic lipids. The fluorous lipids are beneficial for polymer assembly and protein encapsulation, reduced protein denaturation, facilitated endocytosis, and decreased polymer toxicity compared to nonfluorinated lipids. The materials exhibited potent efficacy in therapeutic protein and peptide delivery to achieve cancer therapy and were able to fabricate a personalized nanovaccine for cancer immunotherapy. Finally, the fluorous lipids were directly conjugated to peptides via a disulfide bond for cytosolic peptide delivery. Fluorous lipids drive the assembly of cargo peptides into uniform nanoparticles with much improved proteolytic stability and promote their delivery into various types of cells. The delivery efficacy of this strategy is greatly superior to traditional techniques such as cell-penetrating peptides both in vitro and in vivo. Overall, the fluorination techniques provide efficient and promising strategies for the cytosolic delivery of biomolecules.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangyu Rong
- South China Advanced Institute for Soft Matter Science and Technology, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
8
|
Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14020402. [PMID: 35214133 PMCID: PMC8874657 DOI: 10.3390/pharmaceutics14020402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Fluorination of pharmaceutical agents has afforded crucial modifications to their pharmacological profiles, leading to important advances in medicinal chemistry. On the other hand, metallodrugs are considered to be valuable candidates in the treatment of several diseases, albeit with the caveat that they may exhibit pharmacological disadvantages, such as poor water solubility, low bioavailability and short circulating time. To surmount these limitations, two approaches have been developed: one based on the design of novel metallodrug-delivering carriers and the other based on optimizing the structure of the ligands bound to the metal center. In this context, fluorination of the ligands may bring beneficial changes (physicochemical and biological) that can help to elude the aforementioned drawbacks. Thus, in this review, we discuss the use of fluorinated ligands in the design of metallodrugs that may exhibit potential anticancer activity.
Collapse
|
9
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Novel amphiphilic fluorine-containing nanocarriers for oxygen self-sufficiency "AND" GSH depletion sequentially to enhance photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112341. [PMID: 34474891 DOI: 10.1016/j.msec.2021.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022]
Abstract
In order to maximize the retention of the photodynamic therapy (PDT) efficacy, while avoiding the dilemma of hypoxia and high reducing substances in tumor tissue, fluoropolymers were synthesized in a simple and effective methods. Fluorous effect with good oxygen carrying capacity was endowed by the fluorine-containing section in fluoropolymers and the perfluorodecalin (PFD) together, the reaction site with GSH was provided by the disulfide bond, which enhanced PDT efficiency through the sequential "AND" logic gate design. Two kind of fluorine-containing nanocarriers (M-Ce6 and E-Ce6) were obtained by solvent evaporation or ultrasound emulsification with PFD, respectively. In vitro, both of them showed promising high ROS generation under photoirradiation. Benefiting by cavitation effects, E-Ce6 had a more significant statistical difference in cellular uptake. Furthermore, the cells incubating with E-Ce6 hardly were noticed that the hypoxia signal appeared under hypoxia, while reducing the intracellular GSH content by more than 15%. Through the sequential "AND" logic gate design, ROS production even under hypoxia and GSH conditions of E-Ce6 was also almost 1.5 times that of Ce6 under normoxia. Enhancing effect of E-Ce6 was 13.47 times and 6.85 times, while selectivity ratio reached 5.13 times and 4.81 times compared with Ce6 and M-Ce6. The two-pronged strategy showed a high potential for delivering the Ce6 to deep inside of cancer cells and killing it in the simulated tumor by PDT. These above results demonstrated the potential of E-Ce6, as oxygen self-sufficiency and GSH depletion nanocarriers for combined enhancement of photodynamic therapy.
Collapse
|
11
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
12
|
Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45763-45771. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorinated polymers have attracted increasing attention in gene delivery and cytosolic protein delivery in recent years. In vivo tracking of fluorinated polymers will be of great importance to evaluate their biodistribution, clearance, and safety. However, tracking of polymeric carriers without changing their chemical structures remains a huge challenge. Herein, we reported a series of fluorinated poly-l-(lysine) (F-PLL) with high gene transfection efficiency and excellent biodegradation. Radionuclide 18F was radiolabeled on F-PLL by halogen replacement without chemical modification. The radiolabeling of F-PLL offers positron emission tomography (PET) imaging for in vivo tracking of the polymers. The biodistribution of F-PLL and the DNA complexes revealed by micro-PET imaging illustrated the rapid clearance of fluorinated polymers from liver and intestine after intravenous administration. The results demonstrated that the polymer F-PLL will not be accumulated in the liver and spleen when administrated as a gene carrier. This work presents a new strategy for in vivo tracking fluorinated polymers via PET imaging.
Collapse
Affiliation(s)
- Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Singhania A, Dutta M, Saha S, Sahoo P, Bora B, Ghosh S, Fujita D, Bandyopadhyay A. Speedy one-pot electrochemical synthesis of giant octahedrons from in situ generated pyrrolidinyl PAMAM dendrimer. SOFT MATTER 2020; 16:9140-9146. [PMID: 32926056 DOI: 10.1039/d0sm00819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel electrochemical synthesis via a radical generation pathway is described here for the generation of a quaternary megamer structure from secondary dendrimers. The reaction is rapid and completes in <5 min. We have used lower/higher generation poly(amido)amine (PAMAM) dendrimers with carboxylic acid groups at the terminals. A precise electrocatalytic reaction at >3.5 V activates the carboxylic groups to undergo anodic oxidation (-e-) and produce radical carboxylate anions on the dendrimer surface. The reaction further goes through a decarboxylative elimination. Successive self-assembly creates billions of polydispersed and extremely stable ∼500 nm octahedron nanostructures, which we failed to destroy even by using a 20 kV electron beam. This is a new route for the speedy synthesis of important futuristic materials of well-defined shape. It has applications in building designer organic crystals for solar cells, organic electronics, rapid protein gelation, rapid protein crystallization, etc.
Collapse
Affiliation(s)
- Anup Singhania
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Mrinal Dutta
- PV Metrology Group, Advanced Materials Devices and Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, New Delhi-110012, India
| | - Supriya Saha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India and Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India
| | - Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Bharati Bora
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India.
| | - Subrata Ghosh
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Daisuke Fujita
- Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|
14
|
Wu P, Luo X, Wu H, Zhang Q, Dai Y, Sun M. Efficient and targeted chemo-gene delivery with self-assembled fluoro-nanoparticles for liver fibrosis therapy and recurrence. Biomaterials 2020; 261:120311. [PMID: 32911091 DOI: 10.1016/j.biomaterials.2020.120311] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
The treatment options of liver fibrosis remain limited except for liver transplantation due to the complexity and slow development in its progression. Besides, liver fibrosis recurrence and intervention time have not been reported as significant indicators to affect the anti-fibrotic efficacy of tested drugs/strategies. Herein, a novel fluoropolymer is developed to achieve high drug loading of sorafenib and efficient delivery of miR155 inhibitor (anti-miR155) for dual-targeting of hepatic stellate cells (HSCs) and kupffer cells (KCs), and we report a detailed plan on the design of treatment regimen to reveal the relationship between chemogene therapy, intervention time and fibrosis recurrence. Such a combined chemo-gene therapy of sorafenib and anti-miR155 can achieve superior therapeutic efficiency by polarizing the pro-inflammatory M1 to anti-inflammatory M2 of KCs and inhibiting the proliferation of HSCs. Importantly, efficacy and recurrence prevention of chemogene therapy earlier in the liver fibrosis will be more effective than the treatment at later stage. In conclusion, this work proposes a novel strategy to improve the efficacy and prevent recurrence of liver fibrosis by dual-regulating of KCs and HSCs, and emphasizes the importance of therapy earlier in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Pengkai Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinping Luo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Wu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Qingyan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanxin Dai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Zhang JH, He X, Xiao YP, Zhang J, Wu XR, Yu XQ. Cationic Heteropolymers with Various Functional Groups as Efficient and Biocompatible Nonviral Gene Vectors. ACS APPLIED BIO MATERIALS 2020; 3:3526-3534. [DOI: 10.1021/acsabm.0c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ju-Hui Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xi He
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Ru Wu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
16
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
17
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
18
|
Wang M, Xue H, Gao M, Wang Q, Yang H. Synthetic fluorinated polyamides as efficient gene vectors. J Biomed Mater Res B Appl Biomater 2019; 107:2132-2139. [DOI: 10.1002/jbm.b.34307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mian Wang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Han Xue
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Min Gao
- Lianyungang Technical College; Chenguang Road 2, Lianyungang 222000 China
| | - Qingli Wang
- Jinyuan Mineral Co. Ltd; Lingbao 472500 China
| | - Haijie Yang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| |
Collapse
|
19
|
Zhan X, Yadav P, Diskin-Posner Y, Fridman N, Sundararajan M, Ullah Z, Chen QC, Shimon LJW, Mahammed A, Churchill DG, Baik MH, Gross Z. Positive shift in corrole redox potentials leveraged by modest β-CF3-substitution helps achieve efficient photocatalytic C–H bond functionalization by group 13 complexes. Dalton Trans 2019; 48:12279-12286. [DOI: 10.1039/c9dt02150g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tris- and tetrakis-β-trifluoromethylated gallium (3CF3-Ga, 4CF3-Ga) and aluminum (3CF3-Al, 4CF3-Al) corrole systems were synthesized by a facile “one-pot” approach and studied in the context of photocatalytic C–H bond activation.
Collapse
|
20
|
Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018; 182:167-175. [DOI: 10.1016/j.biomaterials.2018.08.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023]
|
21
|
Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018; 19:2194-2201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| | - Wujun Miao
- Changzheng Hospital , Department of Orthopedic Oncology , Shanghai , P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| |
Collapse
|
22
|
The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat Commun 2018; 9:1377. [PMID: 29636457 PMCID: PMC5893556 DOI: 10.1038/s41467-018-03779-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
Direct delivery of proteins into cells avoids many drawbacks of gene delivery, and thus has emerging applications in biotherapy. However, it remains a challenging task owing to limited charges and relatively large size of proteins. Here, we report an efficient protein delivery system via the co-assembly of fluoroamphiphiles and proteins into nanoparticles. Fluorous substituents on the amphiphiles play essential roles in the formation of uniform nanoparticles, avoiding protein denaturation, efficient endocytosis, and maintaining low cytotoxicity. Structure-activity relationship studies reveal that longer fluorous chain length and higher fluorination degree contribute to more efficient protein delivery, but excess fluorophilicity on the polymer leads to the pre-assembly of fluoroamphiphiles into stable vesicles, and thus failed protein encapsulation and cytosolic delivery. This study highlights the advantage of fluoroamphiphiles over other existing strategies for intracellular protein delivery. Proteins can serve as means of medical treatment, but their efficient delivery to cells is difficult. Here, the authors present a type of polymers, fluoroamphiphiles, acting as chemical chaperones that can facilitate the import of proteins into the inner compartment, i.e. cytosol, of cells.
Collapse
|
23
|
Tan E, Lv J, Hu J, Shen W, Wang H, Cheng Y. Statistical versus block fluoropolymers in gene delivery. J Mater Chem B 2018; 6:7230-7238. [DOI: 10.1039/c8tb01470a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A statistical fluorocopolymer shows dramatically higher transfection efficiency in gene delivery than a block one.
Collapse
Affiliation(s)
- Echuan Tan
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Wanwan Shen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
24
|
Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene Delivery. Top Curr Chem (Cham) 2017; 375:62. [DOI: 10.1007/s41061-017-0151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/18/2017] [Indexed: 01/12/2023]
|
25
|
Xiao YP, Zhang J, Liu YH, Huang Z, Wang B, Zhang YM, Yu XQ. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B 2017; 5:8542-8553. [DOI: 10.1039/c7tb02158e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for the construction of fluorinated cationic polymers for gene delivery was introduced.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
26
|
Folgado E, Guerre M, Bijani C, Ladmiral V, Caminade AM, Ameduri B, Ouali A. Well-defined poly(vinylidene fluoride) (PVDF) based-dendrimers synthesized by click chemistry: enhanced crystallinity of PVDF and increased hydrophobicity of PVDF films. Polym Chem 2016. [DOI: 10.1039/c6py01167e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This study reports the preparation of a novel fluorinated dendrimer bearing PVDF branches by click chemistry and its characterization by several analytical methods.
Collapse
Affiliation(s)
- Enrique Folgado
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse
- France
- Université de Toulouse
| | - Marc Guerre
- Ingénierie et Architectures Macromoléculaires Institut Charles Gerhardt
- UMR 5253
- F-34296 Montpellier Cedex
- France
| | - Christian Bijani
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse
- France
- Université de Toulouse
| | - Vincent Ladmiral
- Ingénierie et Architectures Macromoléculaires Institut Charles Gerhardt
- UMR 5253
- F-34296 Montpellier Cedex
- France
| | - Anne-Marie Caminade
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse
- France
- Université de Toulouse
| | - Bruno Ameduri
- Ingénierie et Architectures Macromoléculaires Institut Charles Gerhardt
- UMR 5253
- F-34296 Montpellier Cedex
- France
| | - Armelle Ouali
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- F-31077 Toulouse
- France
- Université de Toulouse
| |
Collapse
|
27
|
Li H, Yu H, Zhu C, Hu J, Du M, Zhang F, Yang D. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra17213j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multicomponent therapeutic platforms have been proposed to minimize dosage of each drug and reduce toxicity, leading to achieving a synergistic effect and maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Huijuan Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Caiying Zhu
- Obstetrics & Gynecology Hospital
- Shanghai Medical College
- Fudan University
- Shanghai 200011
- China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Ming Du
- Obstetrics & Gynecology Hospital
- Shanghai Medical College
- Fudan University
- Shanghai 200011
- China
| | - Fayong Zhang
- Department of Neurosurgery
- Affiliated Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|