1
|
Yang F, Zhang Z, Chen M, Zhang H, Zhang J, Sun JZ. Functional polydiynes prepared by metathesis cyclopolymerization of 1,7-dihalogen-1,6-heptadiyne derivatives. Polym Chem 2022. [DOI: 10.1039/d2py01145j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MCP route used for the polymerization of 1,6-heptadiynes was successfully applied to the polymerization of 1,7-dihalogen-1,6-heptadiynes, and the target polymers were obtained in high yield with high molecular weight and unique UCST behavior.
Collapse
Affiliation(s)
- Fulin Yang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Manyu Chen
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Centre for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
2
|
Liu X, Liu F, Liu W, Gu H. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1723022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
|
4
|
Disubstituted pendant-functionalized insulating-conductive block copolymer with enhanced dielectric and energy storage performance. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Peterson GI, Yang S, Choi TL. Synthesis of Functional Polyacetylenes via Cyclopolymerization of Diyne Monomers with Grubbs-type Catalysts. Acc Chem Res 2019; 52:994-1005. [PMID: 30689346 DOI: 10.1021/acs.accounts.8b00594] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metathesis cyclopolymerization (CP) of α,ω-diynes is a powerful method to prepare functional polyacetylenes (PAs). PAs have long been studied due to their interesting electrical, optical, photonic, and magnetic properties which make them candidates for use in various advanced applications. Grubbs catalysts are widely used throughout synthetic chemistry, largely due to their accessibility, high reactivity, and tolerance to air, moisture, and many functional groups. Prior to our entrance into this field, only a few examples of CP using modified Grubbs catalysts existed. Inspired by these works, we saw an opportunity to expand the accessibility and utility of Grubbs-catalyzed CPs. We began by exploring CP with popular and commercially available Grubbs catalysts. We found Grubbs third-generation catalyst (G3) to be an excellent catalyst when we used strategies to stabilize the propagating Ru carbene, such as decreasing the polymerization temperature or using weakly coordinating solvent or ligands. Controlled living polymerizations were demonstrated using various 1,6-heptadiyne monomers and yielded polymers with exclusively 5-membered rings (via α-addition) in the polymer backbone. The strategy of stabilizing the Ru carbene was also critical to successful CP with Hoveyda-Grubbs second-generation (HG2) and Grubbs first-generation (G1) catalysts. We found that decomposed Ru species were catalyzing side reactions which could be completely shut down by decreasing the reaction temperature or using weakly coordinating ligands. While HG2 generally led to uncontrolled polymerizations, we found it to be an effective catalyst for monomers with very large side chains. G1 displayed broader functional group tolerance and thus broader monomer scope than G3. We next looked at our ability to change the regioselectivity of the polymerization by using Z-selective catalysts which favor β-addition and the formation of 6-membered rings in the polymer backbone. While modest β-selectivity could be obtained using Grubbs Z-selective catalyst at low temperatures, we found that by using one of Hoveyda and co-workers' catalysts with decreased carbene electrophilicity, we could achieve exclusive formation of 6-membered rings. We also pursued alternative routes to achieve 6+-membered rings in the polymer backbone by using diyne monomers with increased distance between alkynes. We found that optimizing the monomer structure for CP was an effective strategy to achieve controlled polymerizations. By using bulky substituents (maximizing the Thorpe-Ingold effect) and/or using heteroatoms (shorter bonds) to bring the alkynes closer together, controlled living CP could be achieved with various 1,7-octadiyne and 1,8-nonadiyne monomers. Finally, we took advantage of several inherent properties of controlled CP techniques to prepare polymers with advanced architectures and nanostructures. For instance, the living nature of the polymerization enabled production of block copolymers, the tolerance of very large substituents enabled production of dendronized and brush polymers, and the insolubility or crystallinity of some monomers was utilized for the spontaneous self-assembly of polymers into various one- and two-dimensional nanostructures. Overall, the strategies of stabilizing the propagating Ru carbene, modulating the selectivity and reactivity of the Ru carbene, and enhancing the inherent reactivity of monomers were key to improving the utility and performance of CP with Grubbs-type catalysts. The insight provided by these studies will be important for future developments of CP and other metathesis polymerizations utilizing ring-closing steps.
Collapse
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Direksilp C, Sirivat A. Tunable size and shape of conductive poly(
N
‐methylaniline) based on surfactant template and doping. POLYM INT 2019. [DOI: 10.1002/pi.5793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chatrawee Direksilp
- Conductive and Electroactive Polymer Research Unit, Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT)Chulalongkorn University Research Building Bangkok Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymer Research Unit, Petroleum and Petrochemical CollegeChulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT)Chulalongkorn University Research Building Bangkok Thailand
| |
Collapse
|
7
|
Pasini D, Takeuchi D. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem Rev 2018; 118:8983-9057. [PMID: 30146875 DOI: 10.1021/acs.chemrev.8b00286] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomers possessing two functionalities suitable for polymerization are often designed and utilized in syntheses directed to the formation of cross-linked macromolecules. In this review, we give an account of recent developments related to the use of such monomers in cyclopolymerization processes, in order to form linear, soluble macromolecules. These processes can be activated by means of radical, ionic, or transition-metal mediated chain-growth polymerization mechanisms, to achieve cyclic moieties of variable ring size which are embedded within the polymer backbone, driving and tuning peculiar physical properties of the resulting macromolecules. The two functionalities are covalently linked by a "tether", which can be appropriately designed in order to "imprint" elements of chemical information into the polymer backbone during the synthesis and, in some cases, be removed by postpolymerization reactions. The two functionalities can possess identical or even very different reactivities toward the polymerization mechanism involved; in the latter case, consequences and outcomes related to the sequence-controlled, precision synthesis of macromolecules have been demonstrated. Recent advances in new initiating systems and polymerization catalysts enabled the precision syntheses of polymers with regulated cyclic structures by highly regio- and/or stereoselective cyclopolymerization. Cyclopolymerizations involving double cyclization, ring-opening, or isomerization have been also developed, generating unique repeating structures, which can hardly be obtained by conventional polymerization methods.
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry and INSTM Research Unit , University of Pavia , Viale Taramelli , 10-27100 Pavia , Italy
| | - Daisuke Takeuchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , 3 Bunkyo-cho , Hirosaki , Aomori , 036-8561 , Japan
| |
Collapse
|
8
|
Jung K, Kim K, Sung JC, Ahmed TS, Hong SH, Grubbs RH, Choi TL. Toward Perfect Regiocontrol for β-Selective Cyclopolymerization Using a Ru-Based Olefin Metathesis Catalyst. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00969] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kijung Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kunsoon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Chan Sung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tonia S. Ahmed
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Soon Hyeok Hong
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Robert H. Grubbs
- The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Li H, Wang J, Han H, Wu J, Xie M. Dual conductivity of ionic polyacetylene by the metathesis cyclopolymerization of dendronized triazolium-functionalized 1,6-heptadiyne. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Wang C, Li H, Zhang H, Sun R, Song W, Xie M. Enhanced Ionic and Electronic Conductivity of Polyacetylene with Dendritic 1,2,3-Triazolium-Oligo(ethylene glycol) Pendants. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cuifang Wang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| | - Wei Song
- Department of Polymer and Composite Material; School of Materials Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200241 China
| |
Collapse
|
11
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Song JA, Choi TL. Seven-Membered Ring-Forming Cyclopolymerization of 1,8-Nonadiyne Derivatives Using Grubbs Catalysts: Rational Design of Monomers and Insights into the Mechanism for Olefin Metathesis Polymerizations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jung-Ah Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Zhang YD, Ping J, Wu QW, Pan HB, Fan XH, Shen Z, Zhou QF. Bulk self-assembly and ionic conductivity of a block copolymer containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid). Polym Chem 2017. [DOI: 10.1039/c6py02187e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A block copolymer containing a liquid crystalline polymer and a poly(ionic liquid) self-assembles and can be used as a solid electrolyte.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jing Ping
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Qi-Wei Wu
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Hong-Bing Pan
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Qi-Feng Zhou
- Beijing National Laboratory for Molecular Sciences
- Department of Polymer Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|