1
|
Hosseinzadeh E, Bosques-Palomo B, Carmona-Arriaga F, Fabiani MA, Aguirre-Soto A. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings. Macromol Rapid Commun 2024; 45:e2300611. [PMID: 38158746 DOI: 10.1002/marc.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Indexed: 01/03/2024]
Abstract
An ideal vascular phantom should be anatomically accurate, have mechanical properties as close as possible to the tissue, and be sufficiently transparent for ease of visualization. However, materials that enable the convergence of these characteristics have remained elusive. The fabrication of patient-specific vascular phantoms with high anatomical fidelity, optical transparency, and mechanical properties close to those of vascular tissue is reported. These final properties are achieved by 3D printing patient-specific vascular models with commercial elastomeric acrylic-based resins before coating them with thiol-based photopolymerizable resins. Ternary thiol-ene-acrylate chemistry is found optimal. A PETMP/allyl glycerol ether (AGE)/polyethylene glycol diacrylate (PEGDA) coating with a 30/70% AGE/PEGDA ratio applied on a flexible resin yielded elastic modulus, UTS, and elongation of 3.41 MPa, 1.76 MPa, and 63.2%, respectively, in range with the human aortic wall. The PETMP/AGE/PEGDA coating doubled the optical transmission from 40% to 80%, approaching 88% of the benchmark silicone-based elastomer. Higher transparency correlates with a decrease in surface roughness from 2000 to 90 nm after coating. Coated 3D-printed anatomical replicas are showcased for pre-procedural planning and medical training with good radio-opacity and echogenicity. Thiol-click chemistry coatings, as a surface treatment for elastomeric stereolithographic 3D-printed objects, address inherent limitations of photopolymer-based additive manufacturing.
Collapse
Affiliation(s)
- Elnaz Hosseinzadeh
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | - Beatriz Bosques-Palomo
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | | | - Mario Alejandro Fabiani
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64710, México
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| |
Collapse
|
2
|
Alioglu MA, Yilmaz YO, Gerhard EM, Pal V, Gupta D, Rizvi SHA, Ozbolat IT. A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2301858. [PMID: 38883438 PMCID: PMC11178280 DOI: 10.1002/admt.202301858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 06/18/2024]
Abstract
Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 μm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.
Collapse
Affiliation(s)
- Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Yasar Ozer Yilmaz
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ethan Michael Gerhard
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Vaibhav Pal
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Syed Hasan Askari Rizvi
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey 17033, PA, USA
- Penn State Cancer Institute, Penn State University, Hershey 17033, PA, USA
- Department of Medical Oncology, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
3
|
Kaur A, Gautrot JE, Akutagawa K, Watson D, Bickley A, Busfield JJC. Thiyl radical induced cis/ trans isomerism in double bond containing elastomers. RSC Adv 2023; 13:23967-23975. [PMID: 37577099 PMCID: PMC10413178 DOI: 10.1039/d3ra04157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.
Collapse
|
4
|
Nguyen KD, Dejean S, Nottelet B, Gautrot JE. Mechanical Evaluation of Hydrogel-Elastomer Interfaces Generated through Thiol-Ene Coupling. ACS APPLIED POLYMER MATERIALS 2023; 5:1364-1373. [PMID: 36817337 PMCID: PMC9926487 DOI: 10.1021/acsapm.2c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The formation of hybrid hydrogel-elastomer scaffolds is an attractive strategy for the formation of tissue engineering constructs and microfabricated platforms for advanced in vitro models. The emergence of thiol-ene coupling, in particular radical-based, for the engineering of cell-instructive hydrogels and the design of elastomers raises the possibility of mechanically integrating these structures without relying on the introduction of additional chemical moieties. However, the bonding of hydrogels (thiol-ene radical or more classic acrylate/methacrylate radical-based) to thiol-ene elastomers and alkene-functional elastomers has not been characterized in detail. In this study, we quantify the tensile mechanical properties of hybrid hydrogel samples formed of two elastomers bonded to a hydrogel material. We examine the impact of radical thiol-ene coupling on the crosslinking of both elastomers (silicone or polyesters) and hydrogels (based on thiol-ene crosslinking or diacrylate chemistry) and on the mechanics and failure behavior of the resulting hybrids. This study demonstrates the strong bonding of thiol-ene hydrogels to alkene-presenting elastomers with a range of chemistries, including silicones and polyesters. Overall, thiol-ene coupling appears as an attractive tool for the generation of strong, mechanically integrated, hybrid structures for a broad range of applications.
Collapse
Affiliation(s)
- Khai D.
Q. Nguyen
- Institute
of Bioengineering, Queen Mary, University
of London, Mile End Road, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary, University of London, Mile End Road, London E1 4NS, U.K.
| | - Stéphane Dejean
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Benjamin Nottelet
- Polymers
for Health and Biomaterials, IBMM, Univ
Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Julien E. Gautrot
- Institute
of Bioengineering, Queen Mary, University
of London, Mile End Road, London E1 4NS, U.K.
- School
of Engineering and Materials Science, Queen
Mary, University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
5
|
New cross-linked polysiloxanes prepared by UV-induced thiol-ene click-reaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
7
|
Kang J, Lim YW, Lee I, Kim S, Kim KY, Lee W, Bae BS. Photopatternable Poly(dimethylsiloxane) (PDMS) for an Intrinsically Stretchable Organic Electrochemical Transistor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24840-24849. [PMID: 35584034 DOI: 10.1021/acsami.2c06343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Patterning elastomers is an essential process for the application of elastomers to stretchable bioelectric devices. In general, replication of a mold and laser ablation are used for patterning elastomers. However, these methods are inefficient and time consuming due to complex patterning procedures and a heat-induced curing mechanism. In this work, we developed a photopatternable elastomer called thiol-ene cross-linked poly(dimethylsiloxane) (TC-PDMS). TC-PDMS showed high-resolution patternability (∼100 μm) through a direct patterning process. It also had high stretchability (∼140%) and low Young's modulus (∼2.9 MPa) similar to conventional PDMS. To demonstrate its practicability in stretchable bioelectric devices, TC-PDMS was applied to a passivation layer of an intrinsically stretchable organic electrochemical transistor (OECT), which showed a low leakage current (∼20 μA) and a high transconductance (0.432 mS) at high strain (60%). The stretchable OECT was able to record electrocardiographic (ECG) signals from human skin, and the measured ECG signals exhibited a high signal-to-noise ratio of 12.2 dB.
Collapse
Affiliation(s)
- Joohyuk Kang
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Injun Lee
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seungwan Kim
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Yeun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Wonryung Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Byeong-Soo Bae
- Wearable Platform Center, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Liu Z, Wang H, Zhou C. The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers (Basel) 2022; 14:903. [PMID: 35267724 PMCID: PMC8912632 DOI: 10.3390/polym14050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
An elastomer with mechanical adaptability is a new kind of polymer material in which the increasing stress under continuous deformation is significantly inhibited in a large deformation area. Liquid crystal-based organosilicone elastomers, which can dissipate energy through reversible internal phase transition under external stimulation and have recoverable large deformation capacity, have drawn much interest as mechanical adaptability materials. However, there is no good way to control the mechanical adaptability at present. For this purpose, we prepared a new liquid crystal-based phenyl silicone rubber (LCMVPQ) using two-step click reactions and systematically explored the effect of phenyl content on its mechanical adaptability to achieve the regulation of mechanical adaptability. With an increase in phenyl content in the LCMVPQs, phenyl can hinder the rearrangement of the mesogenic units along the applied stress direction, which enables the adjustment of mechanical adaptability to meet the needs of different situations. In addition, the introduction of the liquid crystal phase impedes the internal friction of the molecular chain movement of the LCMVPQs and reduces the damping performance of silicone rubber. This research achieves the regulation of elastomers with mechanical adaptability and is expected to be applied in practical application fields.
Collapse
Affiliation(s)
| | | | - Chuanjian Zhou
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (H.W.)
| |
Collapse
|
9
|
Liu Z, Xiong Y, Hao J, Zhang H, Cheng X, Wang H, Chen W, Zhou C. Liquid Crystal-Based Organosilicone Elastomers with Supreme Mechanical Adaptability. Polymers (Basel) 2022; 14:789. [PMID: 35215702 PMCID: PMC8880581 DOI: 10.3390/polym14040789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Elastomers with supreme mechanical adaptability where the increasing stress under continuous deformation is significantly inhibited within a large deformation zone, are highly desired in many areas, such as artificial muscles, flexible and wearable electronics, and soft artificial-intelligence robots. Such system comprises the advantages of recoverable elasticity and internal compensation to external mechanical work. To obtain elastomer with supreme mechanical adaptability, a novel liquid crystal-based organosilicon elastomer (LCMQ) is developed in this work, which takes the advantages of reversible strain-induced phase transition of liquid crystal units in polymer matrix and the recoverable nano-sized fillers. The former is responsible for the inhibition of stress increasing during deformation, where the external work is mostly compensated by internal phase transition, and the latter provides tunable and sufficient high tensile strength. Such LCMQs were synthesized with 4-methoxyphenyl 4-(but-3-en-1-yloxy)benzoate (MBB) grafted thiol silicone oil (crosslinker-g-MBB) as crosslinking agent, vinyl terminated polydimethylsiloxane as base adhesive, and fumed silica as reinforcing filler by two-step thiol-ene "click" reaction. The obtained tensile strength and the elongation at break are better than previously reported values. Moreover, the resulting liquid crystal elastomers exhibit different mechanical behavior from conventional silicone rubbers. When the liquid crystal content increases from 1% (w/w) to 4% (w/w), the stress plateau for mechanical adaptability becomes clearer. Moreover, the liquid crystal elastomer has no obvious deformation from 25 °C to 120 °C and is expected to be used in industrial applications. It also provides a new template for the modification of organosilicon elastomers.
Collapse
Affiliation(s)
- Zhe Liu
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| | - Yuqi Xiong
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China;
| | - Jinghao Hao
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| | - Hao Zhang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| | - Xiao Cheng
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| | - Hua Wang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| | - Wei Chen
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China;
| | - Chuanjian Zhou
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (Z.L.); (J.H.); (H.Z.); (X.C.); (H.W.)
| |
Collapse
|
10
|
Kaur A, Gautrot JE, Cavalli G, Watson D, Bickley A, Akutagawa K, Busfield JJC. Novel Crosslinking System for Poly-Chloroprene Rubber to Enable Recyclability and Introduce Self-Healing. Polymers (Basel) 2021; 13:3347. [PMID: 34641163 PMCID: PMC8512348 DOI: 10.3390/polym13193347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
The introduction of dynamic bonds capable of mediating self-healing in a fully cross-linked polychloroprene network can only occur if the reversible moieties are carried by the cross-linker itself or within the main polymer backbone. Conventional cross-linking is not suitable for such a purpose. In the present work, a method to develop a self-healable and recyclable polychloroprene rubber is presented. Dynamic disulfide bonds are introduced as part of the structure of a crosslinker (liquid polysulfide polymer, Thiokol LP3) coupled to the polymer backbone via thermally initiated thiol-ene reaction. The curing and kinetic parameters were determined by isothermal differential scanning calorimetry and by moving die rheometer analysis; tensile testing was carried to compare the tensile strength of cured compound, healed compounds and recycled compounds, while chemical analysis was conducted by surface X-ray Photoelectron Spectroscopy. Three formulations with increasing concentrations of Thiokol LP-3 were studied (2, 4, 6 phr), reaching a maximum ultimate tensile strength of 22.4 MPa and ultimate tensile strain of 16.2 with 2 phr of Thiokol LP-3, 11.7 MPa and 10.7 strain with 4 phr and 5.6 MPa and 7.3 strain with 6 phr. The best healing efficiencies were obtained after 24 h of healing at 80 °C, increasing with the concentration of Thiokol LP-3, reaching maximum values of 4.5% 4.4% 13.4% with 2 phr, 4 phr and 6 phr, respectively, while the highest recycling efficiency was obtained with 4 phr of Thiokol LP-3, reaching 11.2%.
Collapse
Affiliation(s)
- Anureet Kaur
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Gabriele Cavalli
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - Douglas Watson
- Weir Advanced Research Centre, Glasgow G1 1RD, UK; (D.W.); (A.B.)
| | - Alan Bickley
- Weir Advanced Research Centre, Glasgow G1 1RD, UK; (D.W.); (A.B.)
| | - Keizo Akutagawa
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| | - James J. C. Busfield
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (A.K.); (J.E.G.); (G.C.); (K.A.)
| |
Collapse
|
11
|
Wright T, Karis D, Millik SC, Tomkovic T, Hatzikiriakos SG, Nelson A, Wolf MO. Photocross-Linked Antimicrobial Amino-Siloxane Elastomers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22195-22203. [PMID: 33944560 DOI: 10.1021/acsami.1c02863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mechanically robust bulk antimicrobial polymers are one way to address disease transmission via contaminated surfaces. Here, we demonstrate the visible light photo-oxidative cross-linking of amine-containing PDMS using a single-component, solvent-free system where amines have a dual role as antimicrobial functionalities and cross-linking sites. Rose Bengal, a xanthene dye used as a fluorescent stain, is thermally reacted with the polymer to give a solvent-free liquid siloxane that can generate reactive singlet oxygen upon aerobic green light irradiation, coupling the amine functionalities into imine cross-links. Photorheological experiments demonstrate that light intensity is the largest kinetic factor in the photo-oxidative curing of these polymers. Room temperature irradiation under an ambient atmosphere results in free-standing elastic materials with mechanical properties that depend on the amount of Rose Bengal present. An ultimate elongation strain of 117% and Young's modulus of 2.15 MPa were observed for the highest dye loading, with both mechanical properties found to be higher than those for the same solution-based dye amounts. We demonstrate that the solvent-free nature of the material can be exploited to generate 3D structures using low-temperature deposition as well as direct-write patterning and photolithography on glass substrates. The antimicrobial activity was investigated, with the cross-linked material demonstrating greater efficacy against E. coli (Gram negative) compared with MRSA (Gram positive) bacterial strains and inducing complete cell lysis of incubated CHO-K1 mammalian cells, demonstrating applicability as a mechanically robust single-component antimicrobial elastomer.
Collapse
Affiliation(s)
- Taylor Wright
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Dylan Karis
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - S Cem Millik
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - Tanja Tomkovic
- Department of Chemical and Biological Engineering, 2360 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, 2360 East Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alshakim Nelson
- Department of Chemistry, 109 Bagley Hall, University of Washington, Seattle, Washington 98195-1700, United States
| | - Michael O Wolf
- Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
12
|
Suriboot J, Marmo AC, Ngo BKD, Nigam A, Ortiz-Acosta D, Tai BL, Grunlan MA. Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone. SOFT MATTER 2021; 17:4133-4142. [PMID: 33735370 DOI: 10.1039/d1sm00288k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to utilize extrusion-based, direct ink write (DIW) 3D printing to create silica-reinforced silicones with complex structures could expand their utility in industrial and biomedical applications. Sylgard 184, a common Pt-cure silicone, lacks the thixotropic behavior necessary for effective printing and its hydrophobicity renders cured structures susceptible to biofouling. Herein, we evaluated the efficacy of various PEO-silane amphiphiles (PEO-SAs) as thixotropic and surface modifying additives in Sylgard 184. Eight amphiphilic PEO-SAs of varying architecture (e.g. linear, star, and graft), crosslinkability, and PEO content were evaluated. Modified formulations were also prepared with additional amounts of silica filler, both hexamethyldisilazane (HMDS)-treated and dimethyldichlorosilane (DiMeDi)-treated types. Numerous PEO-SA modified silicone formulations demonstrated effective water-driven surface hydrophilicity that was generally diminished with the addition of HMDS-treated silica filler. While increased yield stress was observed for PEO-SA modified silicones with added HMDS-treated filler, none achieved the initial target for 3D printing (>1000 Pa). Only the formulations containing the DiMeDi-treated filler (17.3 wt%) were able to surpass this value. These formulations were then tested for their thixotropic properties and all surpassed the targets for recovered storage modulus (G') (>1000 Pa) and loss factor (<0.8). In particular, the triblock linear PEO-SA produced exceptionally high recovered G', low loss factor, and substantial water-driven restructuring to form a hydrophilic surface. Combined, these results demonstrate the potential of silicones modified with PEO-SA surface-modifying additives (SMAs) for extrusion-based, DIW 3D printing applications.
Collapse
Affiliation(s)
- Jakkrit Suriboot
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Alec C Marmo
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Bryan Khai D Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Aman Nigam
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Bruce L Tai
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA and Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Arkles B, Goff J, Min T, Pan Y, Phillips A, DeMella K, Brick C. Single-Molecule Orthogonal Double-Click Chemistry-Inorganic to Organic Nanostructure Transition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27737-27744. [PMID: 32458675 DOI: 10.1021/acsami.0c04018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiasilacyclopentane (TSCP) and azasilacyclopentane (ASCP) heteroatom cyclics have proven capable of rapidly converting hydroxylated surfaces to functionalized surfaces in inorganic click reactions. In this work, we demonstrate that the use of these reagents can be extended to "simultaneous double-clicking" when both inorganic and organic substrates are present at the onset of the reaction. The simultaneous double-click depends on a first ring-opening click with an inorganic substrate that is complete in ∼1 s at 30 °C and results in the reveal of a cryptic mercaptan or secondary amine group, which can then participate in a second click with an organic substrate. TSCPs and ASCPs can take part in tandem double-click reactions in which the organic substrate is added to the reaction mixture after the initial inorganic click reaction is completed. Additionally, ASCPs with exocyclic functionality, specifically N-alkenyl-, N-aminoalkyl, and N-alkynyl-ASCPs, are shown to be options for tandem double-clicking in which functionalization proceeds in two independent steps and the sequence of the double-click reaction can be reversed.
Collapse
Affiliation(s)
- Barry Arkles
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Jonathan Goff
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Taewoo Min
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Youlin Pan
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Alison Phillips
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Kerry DeMella
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| | - Chad Brick
- Gelest, Inc., 11 Steel Road E, Morrisville, Pennsylvania 19067, United States
| |
Collapse
|
14
|
McKenzie TJ, Heaton PS, Rishi K, Kumar R, Brunet T, Beaucage G, Mondain-Monval O, Ayres N. Storage Moduli and Porosity of Soft PDMS PolyMIPEs Can Be Controlled Independently Using Thiol–Ene Click Chemistry. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tucker J. McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Paul S. Heaton
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Kabir Rishi
- Department of Chemical and Materials Engineering, The University of Cincinnati, Cincinnati, Ohio 45242-0012, United States
| | - Raj Kumar
- University of Bordeaux—CNRS, Centre de Recherche Paul Pascal, Pessac 33600, France
| | - Thomas Brunet
- Institut de Mécanique et d’Ingénierie, University of Bordeaux—CNRS—Bordeaux INP, Talence 33402, France
| | - Gregory Beaucage
- Department of Chemical and Materials Engineering, The University of Cincinnati, Cincinnati, Ohio 45242-0012, United States
| | | | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
15
|
Van Guyse JFR, Verjans J, Vandewalle S, De Bruycker K, Du Prez FE, Hoogenboom R. Full and Partial Amidation of Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Joachim F. R. Van Guyse
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jente Verjans
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Stef Vandewalle
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Kevin De Bruycker
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip E. Du Prez
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Sirrine JM, Zlatanic A, Meenakshisundaram V, Messman JM, Williams CB, Dvornic PR, Long TE. 3D Printing Amorphous Polysiloxane Terpolymers via Vat Photopolymerization. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800425] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Justin M. Sirrine
- Department of Chemistry Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
| | - Alisa Zlatanic
- Kansas Polymer Research Center Pittsburg State University Pittsburg KS 66762 USA
| | - Viswanath Meenakshisundaram
- Department of Mechanical Engineering Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
| | - Jamie M. Messman
- Honeywell Federal Manufacturing & Technologies LLC Kansas City MO 64147 USA
| | - Christopher B. Williams
- Department of Mechanical Engineering Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
| | - Petar R. Dvornic
- Department of Chemistry Pittsburg State University Pittsburg KS 66762 USA
| | - Timothy E. Long
- Department of Chemistry Macromolecules Innovation Institute Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
17
|
Long side-chain grafting imparts intrinsic adhesiveness to poly(thiophene phenylene) conjugated polymer. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Sirrine JM, Meenakshisundaram V, Moon NG, Scott PJ, Mondschein RJ, Weiseman TF, Williams CB, Long TE. Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Savin CL, Peptu C, Kroneková Z, Sedlačík M, Mrlik M, Sasinková V, Peptu CA, Popa M, Mosnáček J. Polyglobalide-Based Porous Networks Containing Poly(ethylene glycol) Structures Prepared by Photoinitiated Thiol–Ene Coupling. Biomacromolecules 2018; 19:3331-3342. [DOI: 10.1021/acs.biomac.8b00634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corina L. Savin
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iaşi, 700050 Iaşi, Romania
| | - Cristian Peptu
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iaşi, Romania
| | - Zuzana Kroneková
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia
| | - Michal Sedlačík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslav Mrlik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Vlasta Sasinková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Catalina A. Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iaşi, 700050 Iaşi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iaşi, 700050 Iaşi, Romania
- Academy of Romanian Scientists, 010071 Bucuresti, Romania
| | - Jaroslav Mosnáček
- Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 84541 Bratislava, Slovakia
| |
Collapse
|
20
|
Cao J, Han D, Lu H, Zhang P, Feng S. A readily self-healing and recyclable silicone elastomer via boron–nitrogen noncovalent crosslinking. NEW J CHEM 2018. [DOI: 10.1039/c8nj04258f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A self-healing silicone elastomer was synthesized via a one-pot and noncatalytic aza-Michael reaction because boron–nitrogen coordination bonds form reversible crosslinking points.
Collapse
Affiliation(s)
- Jinfeng Cao
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Dongdong Han
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Hang Lu
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Peng Zhang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
21
|
Steindl J, Koch T, Moszner N, Gorsche C. Silane-Acrylate Chemistry for Regulating Network Formation in Radical Photopolymerization. Macromolecules 2017; 50:7448-7457. [PMID: 29033466 PMCID: PMC5637009 DOI: 10.1021/acs.macromol.7b01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/23/2017] [Indexed: 12/27/2022]
Abstract
Photoinitiated silane-ene chemistry has the potential to pave the way toward spatially resolved organosilicon compounds, which might find application in biomedicine, microelectronics, and other advanced fields. Moreover, this approach could serve as a viable alternative to the popular photoinitiated thiol-ene chemistry, which gives access to defined and functional photopolymer networks. A difunctional bis(trimethylsilyl)silane with abstractable hydrogens (DSiH) was successfully synthesized in a simple one-pot procedure. The radical reactivity of DSiH with various homopolymerizable monomers (i.e., (meth)acrylate, vinyl ester, acrylamide) was assessed via 1H NMR spectroscopic studies. DSiH shows good reactivity with acrylates and vinyl esters. The most promising silane-acrylate system was further investigated in cross-linking formulations toward its reactivity (e.g., heat of polymerization, curing time, occurrence of gelation, double-bond conversion) and compared to state-of-the-art thiol-acrylate resins. The storage stability of prepared resin formulations is greatly improved for silane-acrylate systems vs thiol-ene resins. Double-bond conversion at the gel point (DBCgel) and overall DBC were increased, and polymerization-induced shrinkage stress has been significantly reduced with the introduction of silane-acrylate chemistry. Resulting photopolymer networks exhibit a homogeneous network architecture (indicated by a narrow glass transition) that can be tuned by varying silane concentration, and this confirms the postulated regulation of radical network formation. Similar to thiol-acrylate networks, this leads to more flexible photopolymer networks with increased elongation at break and improved impact resistance. Additionally, swelling tests indicate a high gel fraction for silane-acrylate photopolymers.
Collapse
Affiliation(s)
- Johannes Steindl
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Norbert Moszner
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
- Ivoclar Vivadent
AG, 9494 Schaan, Liechtenstein
| | - Christian Gorsche
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163 MC, 1060 Vienna, Austria
- Christian-Doppler-Laboratory
for Photopolymers in Digital and Restorative Dentistry, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
22
|
Yeh YC, Corbin EA, Caliari SR, Ouyang L, Vega SL, Truitt R, Han L, Margulies KB, Burdick JA. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials 2017; 145:23-32. [PMID: 28843064 DOI: 10.1016/j.biomaterials.2017.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/06/2023]
Abstract
Mechanics of the extracellular matrix (ECM) play a pivotal role in governing cell behavior, such as cell spreading and differentiation. ECM mechanics have been recapitulated primarily in elastic hydrogels, including with dynamic properties to mimic complex behaviors (e.g., fibrosis); however, these dynamic hydrogels fail to introduce the viscoelastic nature of many tissues. Here, we developed a two-step crosslinking strategy to first form (via platinum-catalyzed crosslinking) networks of polydimethylsiloxane (PDMS) and then to increase PDMS crosslinking (via thiol-ene click reaction) in a temporally-controlled manner. This photoinitiated reaction increased the compressive modulus of PDMS up to 10-fold within minutes and was conducted under cytocompatible conditions. With stiffening, cells displayed increased spreading, changing from ∼1300 to 1900 μm2 and from ∼2700 to 4600 μm2 for fibroblasts and mesenchymal stem cells, respectively. In addition, higher myofibroblast activation (from ∼2 to 20%) for cardiac fibroblasts was observed with increasing PDMS substrate stiffness. These results indicate a cellular response to changes in PDMS substrate mechanics, along with a demonstration of a mechanically dynamic and photoresponsive PDMS substrate platform to model the dynamic behavior of ECM.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Elise A Corbin
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Ouyang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Sebastián L Vega
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Truitt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | | | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Wallin TJ, Pikul JH, Bodkhe S, Peele BN, Mac Murray BC, Therriault D, McEnerney BW, Dillon RP, Giannelis EP, Shepherd RF. Click chemistry stereolithography for soft robots that self-heal. J Mater Chem B 2017; 5:6249-6255. [PMID: 32264440 DOI: 10.1039/c7tb01605k] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although soft robotics promises a new generation of robust, versatile machines capable of complex functions and seamless integration with biology, the fabrication of such soft, three dimensional (3D) hierarchical structures remains a significant challenge. Stereolithography (SLA) is an additive manufacturing technique that can rapidly fabricate the complex device architectures required for the next generation of these systems. Current SLA materials and processes are prohibitively expensive, display little elastic deformation at room temperature, or exhibit Young's moduli exceeding most natural tissues, all of which limit use in soft robotics. Herein, we report a low-cost build window substrate that enables the rapid fabrication of high resolution (∼50 μm) silicone (polydimethylsiloxane) based elastomeric devices using an open source SLA printer. Our thiol-ene click chemistry permits photopolymerization using low energy (He < 20 mJ cm-2) optical wavelengths (405 nm < λ < 1 mm) available on many low-cost SLA machines. This chemistry is easily tuned to achieve storage moduli, 6 < E < 283 kPa at engineering strains, γ = 0.02; similarly, a large range of ultimate strains, 0.5 < γult < 4 is achievable through appropriate selection of the two primary chemical constituents (mercaptosiloxane, M.S., and vinylsiloxane, V.S.). Using this chemo-mechanical system, we directly fabricated compliant machines, including an antagonistic pair of fluidic elastomer actuators (a primary component in most soft robots). During printing, we retained unreacted pockets of M.S. and V.S. that permit autonomic self-healing, via sunlight, upon puncture of the elastomeric membranes of the soft actuators.
Collapse
Affiliation(s)
- T J Wallin
- Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|