1
|
Gonzálvez MA, Williams CM, Martínez M, Bernhardt PV. Kinetico-Mechanistic Studies on a Reactive Organocopper(II) Complex: Cu-C Bond Homolysis versus Heterolysis. Inorg Chem 2023; 62:4662-4671. [PMID: 36877141 DOI: 10.1021/acs.inorgchem.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Organocopper(II) reagents are an unexplored frontier of copper catalysis. Despite being proposed as reactive intermediates, an understanding of the stability and reactivity of the CuII-C bond has remained elusive. Two main pathways can be considered for the cleavage mode of a CuII-C bond: homolysis and heterolysis. We recently showed how organocopper(II) reagents can react with alkenes via radical addition, a homolytic pathway. In this work, the decomposition of the complex [CuIILR]+ [L = tris(2- dimethylaminoethyl)amine, Me6tren, R = NCCH2-] in the absence and presence of an initiator (RX, X = Cl, Br) was evaluated. When no initiator was present, first-order CuII-C bond homolysis occurred producing [CuIL]+ and succinonitrile, via radical termination. When an excess of the initiator was present, a subsequent formation of [CuIILX]+ via a second-order reaction was found, which results from the reaction of [CuIL]+ with RX following homolysis. However, when Brønsted acids (R'-OH: R' = H, Me, Ph, PhCO) were present, heterolytic cleavage of the CuII-C bond produced [CuIIL(OR')]+ and MeCN. Kinetic studies were undertaken to obtain the thermal (ΔH⧧, ΔS⧧) and pressure (ΔV⧧) activation parameters and deuterium kinetic isotopic effects, which provided an understanding of the strength of the CuII-C bond and the nature of the transition state for the reactions involved. These results reveal possible reaction pathways for organocopper(II) complexes relevant to their applications as catalysts in C-C bond forming reactions.
Collapse
Affiliation(s)
- Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
2
|
Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions. Polymers (Basel) 2023; 15:polym15051075. [PMID: 36904317 PMCID: PMC10007166 DOI: 10.3390/polym15051075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.
Collapse
|
3
|
Wei Z, Chen D, Zhang X, Wang L, Yang W. Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinru Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center for the Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China
| |
Collapse
|
4
|
Maurya DS, Malik A, Feng X, Bensabeh N, Lligadas G, Percec V. Me6-TREN/TREN Mixed-Ligand Effect During SET-LRP in the Catalytically Active DMSO Revitalizes TREN into an Excellent Ligand. Biomacromolecules 2020; 21:1902-1919. [DOI: 10.1021/acs.biomac.9b01765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Devendra S. Maurya
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ayesha Malik
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xiaojing Feng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
5
|
Feng X, Maurya DS, Bensabeh N, Moreno A, Oh T, Luo Y, Lejnieks J, Galià M, Miura Y, Monteiro MJ, Lligadas G, Percec V. Replacing Cu(II)Br2 with Me6-TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules 2019; 21:250-261. [DOI: 10.1021/acs.biomac.9b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojing Feng
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Devendra S. Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Takahiro Oh
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yuqing Luo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ja̅nis Lejnieks
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Moreno A, Bensabeh N, Parve J, Ronda JC, Cádiz V, Galià M, Vares L, Lligadas G, Percec V. SET-LRP of Bio- and Petroleum-Sourced Methacrylates in Aqueous Alcoholic Mixtures. Biomacromolecules 2019; 20:1816-1827. [PMID: 30882211 DOI: 10.1021/acs.biomac.9b00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-electron transfer-living radical polymerization (SET-LRP) in "programmed" aqueous organic biphasic systems eliminates the judicious choice of solvent and also provides accelerated reaction rates. Herein, we report efforts to expand the monomer scope for these systems by targeting methacrylic monomers and polymers. Various environmentally friendly aqueous alcoholic mixtures were used in combination with Cu(0) wire catalyst, tris(2-dimethylaminoethyl)amine (Me6-TREN) ligand, and p-toluenesulfonyl chloride (Ts-Cl) initiator to deliver well-defined polymethacrylates from methyl methacrylate, butyl methacrylate, and other monomers derived from biomass feedstock (e.g., lactic acid, isosorbide, furfural, and lauric acid). The effect of water on the nature of the reaction mixture during the SET-LRP process, reaction rate, and control of the polymerization is discussed. The control retained under the reported conditions is demonstrated by synthesizing polymers of different targeted molar mass as well as quasi-block AB copolymers by "in situ" chain extension at high conversion. These results highlight the capabilities of SET-LRP to provide sustainable solutions based on renewable resources.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Jaan Parve
- Department of Chemistry and Biotechnology , Tallinn University of Technology , Ehitajate tee 5 , Tallinn 19086 , Estonia
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain
| | - Lauri Vares
- Institute of Technology , University of Tartu , Nooruse 1 , Tartu 50411 , Estonia
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry , University Rovira i Virgili , Tarragona 43007 , Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
7
|
Flynn S, Dwyer AB, Chambon P, Rannard S. Expanding the monomer scope of linear and branched vinyl polymerisations via copper-catalysed reversible-deactivation radical polymerisation of hydrophobic methacrylates using anhydrous alcohol solvents. Polym Chem 2019. [DOI: 10.1039/c9py00777f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of anhydrous alcohols for Cu-catalysed reversible-deactivation radical polymerisation of a wide range of hydrophobic methacrylates has been explored in detail.
Collapse
Affiliation(s)
- Sean Flynn
- Materials Innovation Factory
- University of Liverpool
- UK
| | | | | | - Steve Rannard
- Materials Innovation Factory
- University of Liverpool
- UK
| |
Collapse
|
8
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
9
|
|
10
|
Enayati M, Abbaspourrad A. Facile preparation of superhydrophobic and oleophobic surfaces via the combination of Cu(0)-mediated reversible-deactivation radical polymerization and click chemistry. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mojtaba Enayati
- Department of Food Science, College of Agriculture and Life Sciences; Cornell University; Ithaca New York
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences; Cornell University; Ithaca New York
| |
Collapse
|
11
|
Bensabeh N, Ronda JC, Galià M, Cádiz V, Lligadas G, Percec V. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate. Biomacromolecules 2018. [DOI: 10.1021/acs.biomac.8b00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Joan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
12
|
Moreno A, Lejnieks J, Ding L, Grama S, Galià M, Lligadas G, Percec V. Highly reactive α-bromoacrylate monomers and Michael acceptors obtained by Cu(ii)Br2-dibromination of acrylates and instantaneous E2 by a ligand. Polym Chem 2018. [DOI: 10.1039/c8py00155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The importance of the order of addition of reagents in SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
13
|
Duque-Sánchez L, Brack N, Postma A, Pigram PJ, Meagher L. Optimisation of grafting of low fouling polymers from three-dimensional scaffolds via surface-initiated Cu(0) mediated polymerisation. J Mater Chem B 2018; 6:5896-5909. [DOI: 10.1039/c8tb01828f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Well-controlled low fouling polymers brushes were grafted from the surface of biodegradable electrospun fibres for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Lina Duque-Sánchez
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
- CSIRO Manufacturing
| | - Narelle Brack
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
| | | | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
| | - Laurence Meagher
- Monash Institute of Medical Engineering and Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
14
|
Moreno A, Jezorek RL, Liu T, Galià M, Lligadas G, Percec V. Macromonomers, telechelics and more complex architectures of PMA by a combination of biphasic SET-LRP and biphasic esterification. Polym Chem 2018. [DOI: 10.1039/c8py00150b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macromonomers and telechelics of PMA via biphasic SET-LRP and biphasic esterification with potassium acrylate.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
15
|
Moreno A, Lejnieks J, Galià M, Lligadas G, Percec V. Acetone: a solvent or a reagent depending on the addition order in SET-LRP. Polym Chem 2018. [DOI: 10.1039/c8py01331d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The importance of reagent order in biphasic SET-LRP in acetone/water mixtures is shown.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
16
|
Town JS, Jones GR, Haddleton DM. MALDI-LID-ToF/ToF analysis of statistical and diblock polyacrylate copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00928g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of MALDI-LID-ToF/ToF utilising the laser induced dissociation (LID) fragmentation technique, which has been almost exclusively applied to protein/peptide analysis to date.
Collapse
Affiliation(s)
- James S. Town
- Department of chemistry
- University of Warwick
- Coventry
- UK
| | - Glen R. Jones
- Department of chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
17
|
Moreno A, Liu T, Galià M, Lligadas G, Percec V. Acrylate-macromonomers and telechelics of PBA by merging biphasic SET-LRP of BA, chain extension with MA and biphasic esterification. Polym Chem 2018. [DOI: 10.1039/c8py00156a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chain extension of PBA with MA allows the preparation of acrylate-functional PBA.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
18
|
Moreno A, Liu T, Ding L, Buzzacchera I, Galià M, Möller M, Wilson CJ, Lligadas G, Percec V. SET-LRP in biphasic mixtures of fluorinated alcohols with water. Polym Chem 2018. [DOI: 10.1039/c8py00062j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient and inexpensive SET-LRP in biphasic-mixtures of fluorinated alcohols with water.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Irene Buzzacchera
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
19
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Lligadas G, Enayati M, Grama S, Smail R, Sherman SE, Percec V. Ultrafast SET-LRP with Peptoid Cytostatic Drugs as Monofunctional and Bifunctional Initiators. Biomacromolecules 2017; 18:2610-2622. [DOI: 10.1021/acs.biomac.7b00722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gerard Lligadas
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Mojtaba Enayati
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Silvia Grama
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Rauan Smail
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Samuel E. Sherman
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Smail RB, Jezorek RL, Lejnieks J, Enayati M, Grama S, Monteiro MJ, Percec V. Acetone–water biphasic mixtures as solvents for ultrafast SET-LRP of hydrophobic acrylates. Polym Chem 2017. [DOI: 10.1039/c7py00557a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of SET-LRP catalyzed with Cu(0) wire from single phase (acetone/water = 9/1, v/v) into biphase (acetone/water = 8/2, v/v).
Collapse
Affiliation(s)
- Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
23
|
Grama S, Lejnieks J, Enayati M, Smail RB, Ding L, Lligadas G, Monteiro MJ, Percec V. Searching for efficient SET-LRP systems via biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents. Polym Chem 2017. [DOI: 10.1039/c7py01349c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents to discover new SET-LRP solvent systems.
Collapse
Affiliation(s)
- Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Liang Ding
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
24
|
Wang D, Guo S, Zhang Q, Wilson P, Haddleton DM. Mussel-inspired thermoresponsive polymers with a tunable LCST by Cu(0)-LRP for the construction of smart TiO2 nanocomposites. Polym Chem 2017. [DOI: 10.1039/c7py00736a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thermoresponsive polymers with different microstructures, a tunable LCST and terminal catechol anchors were synthesized by Cu(0)-LRP for the surface functionalization of TiO2 nanoparticles.
Collapse
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Paul Wilson
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
25
|
Moreno A, Grama S, Liu T, Galià M, Lligadas G, Percec V. SET-LRP mediated by TREN in biphasic water–organic solvent mixtures provides the most economical and efficient process. Polym Chem 2017. [DOI: 10.1039/c7py01841j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Screening ligands and solvents for economical and efficient biphasic SET-LRP.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
26
|
Jezorek RL, Enayati M, Smail RB, Lejnieks J, Grama S, Monteiro MJ, Percec V. The stirring rate provides a dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic acetonitrile–water mixtures. Polym Chem 2017. [DOI: 10.1039/c7py00659d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rate of interfacial SET-LRP in biphasic acetonitrile–water mixtures is stirring rate dependent.
Collapse
Affiliation(s)
- Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Jānis Lejnieks
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
27
|
Vorobii M, Pop-Georgievski O, de los Santos Pereira A, Kostina NY, Jezorek R, Sedláková Z, Percec V, Rodriguez-Emmenegger C. Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py01730d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of polymer brushes from a variety of methacrylate monomers was accomplished using UV light as a polymerization trigger.
Collapse
Affiliation(s)
- Mariia Vorobii
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Andres de los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Nina Yu. Kostina
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ryan Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Zdeňka Sedláková
- Department of Chemistry and Physics of Surfaces and Biointerfaces
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
- Roy & Diana Vagelos Laboratories
| |
Collapse
|
28
|
Enayati M, Smail RB, Grama S, Jezorek RL, Monteiro MJ, Percec V. The synergistic effect during biphasic SET-LRP in ethanol–nonpolar solvent–water mixtures. Polym Chem 2016. [DOI: 10.1039/c6py01815g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adding a nonpolar solvent to ethanol–water reaction mixtures transforms SET-LRP of BA from triphasic to biphasic exhibiting a synergistic effect.
Collapse
Affiliation(s)
- Mojtaba Enayati
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Rauan B. Smail
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|