1
|
Van Guyse JFR, Bernhard Y, Podevyn A, Hoogenboom R. Non-activated Esters as Reactive Handles in Direct Post-Polymerization Modification. Angew Chem Int Ed Engl 2023; 62:e202303841. [PMID: 37335931 DOI: 10.1002/anie.202303841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Non-activated esters are prominently featured functional groups in polymer science, as ester functional monomers display great structural diversity and excellent compatibility with a wide range of polymerization mechanisms. Yet, their direct use as a reactive handle in post-polymerization modification has been typically avoided due to their low reactivity, which impairs the quantitative conversion typically desired in post-polymerization modification reactions. While activated ester approaches are a well-established alternative, the modification of non-activated esters remains a synthetic and economically valuable opportunity. In this review, we discuss past and recent efforts in the utilization of non-activated ester groups as a reactive handle to facilitate transesterification and aminolysis/amidation reactions, and the potential of the developed methodologies in the context of macromolecular engineering.
Collapse
Affiliation(s)
- Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
- Université de Lorraine, UMR CNRS 7053 L2CM, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France
| | - Annelore Podevyn
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Dey A, Haldar U, Tota R, Faust R, De P. PIB-based block copolymer with a segment having alternating sequence of leucine and alanine side-chain pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2189434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Ujjal Haldar
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rajasekhar Tota
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Rudolf Faust
- Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
3
|
Chen X, Michinobu T. Postpolymerization Modification: A Powerful Tool for the Synthesis and Function Tuning of Stimuli‐Responsive Polymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xu Chen
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering Tokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
4
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Park JR, Sarwat M, Bolle ECL, de Laat MA, Van Guyse JFR, Podevyn A, Hoogenboom R, Dargaville TR. Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polym Chem 2020. [DOI: 10.1039/d0py00602e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A shift in cloud point temperatures of poly(2-oxazoline)/ACE inhibitor polymer drug conjugates occurs on release of the drug.
Collapse
Affiliation(s)
- Jong-Ryul Park
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Mariah Sarwat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Eleonore C. L. Bolle
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Melody A. de Laat
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| | - Joachim F. R. Van Guyse
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Annelore Podevyn
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Tim R. Dargaville
- Institute of Health and Biomedical Innovation
- Science and Engineering Faculty
- Queensland University of Technology
- Australia
| |
Collapse
|
6
|
Podasca VE, Chibac AL, Buruiana EC. Fluorescence quenching study of a block copolymer with uracil end units by means of nitroaromatic derivatives and metal cations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Vidal F, Gomezcoello J, Lalancette RA, Jäkle F. Lewis Pairs as Highly Tunable Dynamic Cross-Links in Transient Polymer Networks. J Am Chem Soc 2019; 141:15963-15971. [DOI: 10.1021/jacs.9b07452] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - John Gomezcoello
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
8
|
Wu YC, Swager TM. Living Polymerization of 2-Ethylthio-2-oxazoline and Postpolymerization Diversification. J Am Chem Soc 2019; 141:12498-12501. [PMID: 31365245 PMCID: PMC6727665 DOI: 10.1021/jacs.9b06009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 01/12/2023]
Abstract
The postpolymerization modification of polymers produced by living polymerization is an attractive method to create precision nanomaterials. We describe the living cationic ring-opening polymerization of a 2-alkylthio-2-oxazoline to furnish a polythiocarbamate. The polythiocarbamate is activated toward substitution by N- and S-nucleophiles via oxidation of the S to an SO2. Mild substitution conditions provide broad functional group tolerance, constituting a versatile postpolymerization modification platform with access to a diversity of polyureas and polythiocarbamates. We further demonstrate the utility of this strategy by synthesizing and functionalizing block copolymers.
Collapse
Affiliation(s)
- You-Chi
Mason Wu
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
10
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
11
|
Lee J, Park JM, Jang WD. Fructose-sensitive thermal transition behaviour of boronic ester-bearing telechelic poly(2-isopropyl-2-oxazoline). Chem Commun (Camb) 2019; 55:3343-3346. [DOI: 10.1039/c8cc09835b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Boronic ester-bearing telechelic poly(2-isopropyl-2-oxazoline) (B-PiPrOx-B) exhibited a hydrophilic–hydrophobic phase transition near human-body temperature in aqueous media.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Jong Min Park
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| | - Woo-Dong Jang
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Korea
| |
Collapse
|
12
|
Brooks WLA, Deng CC, Sumerlin BS. Structure-Reactivity Relationships in Boronic Acid-Diol Complexation. ACS OMEGA 2018; 3:17863-17870. [PMID: 31458380 PMCID: PMC6644144 DOI: 10.1021/acsomega.8b02999] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 06/01/2023]
Abstract
Boronic acids have found widespread use in the field of biomaterials, primarily through their ability to bind with biologically relevant 1,2- and 1,3-diols, including saccharides and peptidoglycans, or with polyols to prepare hydrogels with dynamic covalent or responsive behavior. Despite a wide range of boronic acid architectures that have been previously considered, there is a need for greater understanding of the structure-reactivity relationships that govern binding affinity to diols. In this study, various boronic acids and other organoboron compounds were investigated to determine their pK a and their binding constants with the biologically relevant diols including sorbitol, fructose, and glucose. Boronic acid pK a values were determined through spectroscopic titration, whereas binding constants were determined by fluorescence spectroscopy during competitive binding studies. Key structure-reactivity relationships clearly indicated that both boronic acid structure and solution pH must be carefully considered. By considering a variety of boronic acids with systematically varied electronics and sterics, these results provide guidance during selection of organoboron compounds in sensing, delivery, and materials chemistry.
Collapse
Affiliation(s)
- William L. A. Brooks
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Christopher C. Deng
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| | - Brent S. Sumerlin
- George & Josephine Butler
Polymer Research Laboratory, Center for Macromolecular Science &
Engineering, Department of Chemistry, University
of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
13
|
Synthesis and characterization of triple-responsive PNiPAAm-S-S-P(αN3CL-g-alkyne) copolymers bearing cholesterol and fluorescence monitor. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Vrbata D, Uchman M. Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer micelles using phenylboronic ester as a sensitive block linkage. NANOSCALE 2018; 10:8428-8442. [PMID: 29666865 DOI: 10.1039/c7nr09427b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study describes the synthesis, self-assembly and responsiveness to glucose and lactic acid of biocompatible and biodegradable block copolymer micelles using phenylboronic ester as the linkage between hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylene oxide) (PEO). The PCL block with pendant phenylboronic acid (PCLBA) was synthesized by combining ε-caprolactone (ε-CL) ring-opening polymerisation (ROP), using 4-hydroxymethyl(phenylboronic) acid pinacolate as the initiator, and pinacol deprotection. The glucose-terminated PEO (PEOGlc) was prepared by 1,3-dipolar, Cu(i)-catalysed, alkyne-azide cycloaddition of α-methoxy-ω-propargyl poly(ethylene oxide) and 1-azido-1-deoxy-d-glucopyranose. All new compounds were evaluated by 1H NMR spectroscopy and by SEC analysis. PCLBA and PEOGlc blocks were linked in NaOH acetone solution, which was indirectly confirmed by Alizarin Red S fluorescence and directly by 1H NMR spectroscopy. Dialysis against Milli-Q water induced the self-assembly of PCLBA-b-PEOGlc nanoparticles, which were characterised by static (SLS) and dynamic (DLS) light scattering and by cryogenic transmission electron microscopy (cryo-TEM). Furthermore, the microscopic properties of the charged interface between the hydrophobic PCLBA core and the hydrophilic PEOGlc shell were examined by electrophoretic light scattering (zeta potential) and by fluorescence spectroscopy using the fluorescent probe 5-(N-dodecanoyl)aminofluorescein (DAF) as a pH indicator. Subsequently, the nanoparticles were transferred to a phosphate buffer saline (PBS) solution supplemented with different concentrations of glucose to simulate the physiological conditions in blood or lactic acid to simulate acidic cytosolic or endosomal conditions in tumour cells. Adding a surplus of glucose or lactic acid, which competitively binds to PBA, removes the stabilising hydrophilic PEOGlc blocks, thereby triggering marked nanoparticle aggregation. However, the rate of aggregation induced by lactic acid is considerably faster than that induced by glucose, as confirmed by light scattering. Thus, this novel block copolymer may contribute to the field of selective, lactic acid- and/or glucose-responsive drug delivery vehicle design under both pathological and physiological conditions.
Collapse
Affiliation(s)
- David Vrbata
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| | | |
Collapse
|
15
|
Sofla SFI, Abbasian M, Mirzaei M. Synthesis and micellar characterization of novel pH-sensitive thiol-ended triblock copolymer via combination of RAFT and ROP processes. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1445630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Mortaza Mirzaei
- Department of Chemistry (Organic chemistry), Miyaneh branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
16
|
Ghorbani M, Mahmoodzadeh F, Nezhad-Mokhtari P, Hamishehkar H. A novel polymeric micelle-decorated Fe3O4/Au core–shell nanoparticle for pH and reduction-responsive intracellular co-delivery of doxorubicin and 6-mercaptopurine. NEW J CHEM 2018. [DOI: 10.1039/c8nj03310b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergistic antitumor activity against MCF-7 cells was confirmed by co-delivery of doxorubicin and 6-mercaptopurine via dual pH/reduction-responsive nanoparticles.
Collapse
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | | | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
17
|
Gaballa H, Lin S, Shang J, Meier S, Theato P. A synthetic approach toward a pH and sugar-responsive diblock copolymer via post-polymerization modification. Polym Chem 2018. [DOI: 10.1039/c8py00660a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel pH- and sugar-responsive diblock copolymer containing phenylboronic acid was synthesized by RAFT and a post-polymerization modification strategy.
Collapse
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Shaojian Lin
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Sabrina Meier
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
18
|
Jerca FA, Jerca VV, Anghelache AM, Vuluga DM, Hoogenboom R. Poly(2-isopropenyl-2-oxazoline) as a versatile platform towards thermoresponsive copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00612a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thermoresponsive (co)polymers with LCST behavior based on a well-defined PiPOx scaffold showing high versatility in tuning up the TCP as well as the interval of response.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Valentin Victor Jerca
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| | - Alina Maria Anghelache
- Centre of Organic Chemistry “Costin D. Nenitescu”
- Romanian Academy
- 060023 Bucharest
- Romania
- Department of Bioresources and Polymer Science
| | - Dumitru Mircea Vuluga
- Centre of Organic Chemistry “Costin D. Nenitescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- B-9000 Ghent
| |
Collapse
|
19
|
Biswas Y, Mandal TK. Structural Variation in Homopolymers Bearing Zwitterionic and Ionic Liquid Pendants for Achieving Tunable Multi-Stimuli Responsiveness and Hierarchical Nanoaggregates. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yajnaseni Biswas
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
20
|
Mahmoodzadeh F, Abbasian M, Jaymand M, Amirshaghaghi A. A novel dual stimuli-responsive thiol-end-capped ABC triblock copolymer: synthesis via reversible addition-fragmentation chain transfer technique, and investigation of its self-assembly behavior. POLYM INT 2017. [DOI: 10.1002/pi.5428] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Ahmad Amirshaghaghi
- Department of Bioengineering; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
21
|
Lu Y, Zou H, Yuan H, Gu S, Yuan W, Li M. Triple stimuli-responsive supramolecular assemblies based on host-guest inclusion complexation between β-cyclodextrin and azobenzene. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Brooks WLA, Vancoillie G, Kabb CP, Hoogenboom R, Sumerlin BS. Triple responsive block copolymers combining pH‐responsive, thermoresponsive, and glucose‐responsive behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28615] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- William L. A. Brooks
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| | - Gertjan Vancoillie
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
- Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaanGhent281 S4 Belgium
| | - Christopher P. Kabb
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| | - Richard Hoogenboom
- Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaanGhent281 S4 Belgium
| | - Brent S. Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| |
Collapse
|
23
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
24
|
Lin YK, Yu YC, Wang SW, Lee RS. Temperature, ultrasound and redox triple-responsive poly(N-isopropylacrylamide) block copolymer: synthesis, characterization and controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra06825e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triple stimuli-responsive polymers PNiPAAm-S-S-PXCL containing a disulfide (–S–S–) bond as a junction point between hydrophilic and hydrophobic chains were synthesized and characterized.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine
- Chang Gung Memorial Hospital at Keelung
- Keelung
- Taiwan
| | - Yung-Ching Yu
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Ren-Shen Lee
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| |
Collapse
|