1
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
2
|
Yang K, Wang S, Zhou R, Cheng Q, Wang Q, Li Y. Synthesis of
s
yndiotactic polystyrene
—
Polyisobutylene graft copolymers by cationic
half‐sandwich
scandium complex. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ke Yang
- State Key Laboratory of Safety and Control for Chemicals Sinopec Research Institute of Safety Engineering Co., Ltd. Qingdao China
| | - Shanda Wang
- State Key Laboratory of Safety and Control for Chemicals Sinopec Research Institute of Safety Engineering Co., Ltd. Qingdao China
| | - Rifeng Zhou
- State Key Laboratory of Safety and Control for Chemicals Sinopec Research Institute of Safety Engineering Co., Ltd. Qingdao China
| | - Qingli Cheng
- State Key Laboratory of Safety and Control for Chemicals Sinopec Research Institute of Safety Engineering Co., Ltd. Qingdao China
| | - Quanguo Wang
- State Key Laboratory of Safety and Control for Chemicals Sinopec Research Institute of Safety Engineering Co., Ltd. Qingdao China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| |
Collapse
|
3
|
Wu Y, Nan T, Ji X, Liu B, Cui D. A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angew Chem Int Ed Engl 2022; 61:e202205894. [DOI: 10.1002/anie.202205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| |
Collapse
|
4
|
Wu Y, Nan T, Ji X, Liu B, Cui D. A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| |
Collapse
|
5
|
Hayes G, Drain B, Becer CR. Multiarm Core Cross-Linked Star-Shaped Poly(2-oxazoline)s Using a Bisfunctional 2-Oxazoline Monomer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graham Hayes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - C. Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
6
|
Li H, Zhao H, Yao L, Zhang L, Cheng Z, Zhu X. Photocontrolled bromine–iodine transformation reversible-deactivation radical polymerization: facile synthesis of star copolymers and unimolecular micelles. Polym Chem 2021. [DOI: 10.1039/d1py00006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A facile strategy of synthesizing star copolymers was successfully established via photocontrolled BIT-RDRP. The obtained copolymers have well-defined four-arm amphiphilic block architecture and can form stable unimolecular micelles in water.
Collapse
Affiliation(s)
- Haihui Li
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Haitao Zhao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lan Yao
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
7
|
Monaco A, Drain B, Becer CR. Detailed GPC analysis of poly( N-isopropylacrylamide) with core cross-linked star architecture. Polym Chem 2021. [DOI: 10.1039/d1py00966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Core cross-linked star shaped polymers possess unique physical properties that can be utilized as drug transporters for biomedical applications.
Collapse
Affiliation(s)
- Alessandra Monaco
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Ben Drain
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - C. Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
8
|
Kuznetsov AA, Soldatova AE, Tsegel’skaya AY, Semenova GK. Synthesis of Branched Polyimides of Different Topological Structure. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s1811238220020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Li D, Liu K, Tang J, Cui Z, Hua J. Preparation of high 1,2‐orientation butadiene‐styrene copolymer by coordination copolymerization with molybdenum‐based catalytic system. J Appl Polym Sci 2020. [DOI: 10.1002/app.48897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Di Li
- Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber and PlasticsQingdao University of Science and Technology Qingdao Shandong 266042 People's Republic of China
| | - Kai Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solid LaboratoryInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Jian Tang
- Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber and PlasticsQingdao University of Science and Technology Qingdao Shandong 266042 People's Republic of China
| | - Zixu Cui
- Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber and PlasticsQingdao University of Science and Technology Qingdao Shandong 266042 People's Republic of China
| | - Jing Hua
- Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber and PlasticsQingdao University of Science and Technology Qingdao Shandong 266042 People's Republic of China
| |
Collapse
|
10
|
Yu J, Niu H, Yang K, Yu H, Wang J, Li T, Li Y. Synthesis of Hyperbranched Polyisoprene by Isoprene/Dimethyl‐di‐2,4‐Pentadieneyl‐(
E
,
E
)‐Silane Copolymerization Catalyzed with Half‐Sandwich Scandium Complex. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jialin Yu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Hui Niu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Ke Yang
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Hui Yu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Jing Wang
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tingting Li
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Yang Li
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| |
Collapse
|
11
|
A new complex compound of chromium(III) with 5-aminopyridine-2-carboxylate anions – Structure, physicochemical and catalytic properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure–Property Relationship of Metal–Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Tao Hong
- Deparmemt of ChemistryUniversity of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Xiaozhi Zhan
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of Science Dongguan 523000 China
| | - Tao Zhu
- Institute of PhysicsChinese Academy of Science Beijing 100190 China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
13
|
Zhang M, Lai Y, Li M, Hong T, Wang W, Yu H, Li L, Zhou Q, Ke Y, Zhan X, Zhu T, Huang C, Yin P. The Microscopic Structure-Property Relationship of Metal-Organic Polyhedron Nanocomposites. Angew Chem Int Ed Engl 2019; 58:17412-17417. [PMID: 31545541 DOI: 10.1002/anie.201909241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Indexed: 12/11/2022]
Abstract
Monodispersed hairy nanocomposites with typical 2 nm (isophthalic acid)24 Cu24 metal-organic polyhedra (MOP) as a core protected by 24 polymer chains with controlled narrow molecular weight distribution has been probed by imaging and scattering studies for the heterogeneity of polymers in the nanocomposites and the confinement effect the MOPs imposing on anchored polymers. Typical confined-extending surrounded by one entanglement area is proposed to describe the physical states of the polymer chains. This model dictates the counterintuitive thermal and rheological properties and prohibited solvent exchange properties of the nanocomposites, whilst those polymer chain states are tunable and deterministic based on their component inputs. From the relationship between the structure and behavior of the MOP nanocomposites, a MOP-composited thermoplastic elastomer was obtained, providing practical solutions to improve mechanical/rheological performances and processabilities of inorganic MOPs.
Collapse
Affiliation(s)
- Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Hong
- Deparmemt of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee, 37996, USA
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Haitao Yu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lengwan Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Xiaozhi Zhan
- China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Science, Dongguan, 523000, China
| | - Tao Zhu
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Caili Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
Yu H, Yang K, Niu H, Yu J, Dong J, Wang J, Li Y. Syndiospecific Coordination Polymerization of Si-H-Containing Styrenes Catalyzed by Scandium Complex and Synthesis of Styrene-Based Triblock Copolymers. Macromol Rapid Commun 2019; 40:e1900048. [PMID: 30900788 DOI: 10.1002/marc.201900048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/20/2019] [Indexed: 11/08/2022]
Abstract
The controlled syndiospecific polymerization of three Si-H-containing styrenes, that is, 4-(methylhydrosilyl)styrene (FSt-1), 4-(dimethylhydrosilyl)styrene (FSt-2) and 4-(diisopropylhydrosilyl)styrene (FSt-3), is realized in the presence of (C5 Me4 SiMe3 )Sc (CH2 C6 H5 )2 (THF)/[Ph3 C][B(C6 F5 )4 ]. Then a series of FSt-b-styrene-b-FSt triblock copolymers (FSt-St-FSt) are synthesized facilely via a sequential monomer feeding process (FSt-2, styrene, and FSt-2, respectively) during the polymerization. The syndiotactic polystyrene (sPS) block in the middle endows the copolymer with high melting point above 250 °C, whereas the Si-H groups on monomer FSt-2 introduce functional pendants to the end-blocks (with Si-H content of 31-63 mol%). Finally by a mild and high-effective hydrosilylation reaction, novel polar-group functionalized sPS is obtained.
Collapse
Affiliation(s)
- Hui Yu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ke Yang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hui Niu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jialin Yu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinghan Dong
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
Vrijsen JH, Osiro Medeiros C, Gruber J, Junkers T. Continuous flow synthesis of core cross-linked star polymers via photo-induced copper mediated polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00134d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A convenient method to synthesize core cross-linked star polymers via a continuous flow photopolymerization process is developed.
Collapse
Affiliation(s)
- Jeroen H. Vrijsen
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
| | - Camila Osiro Medeiros
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Departamento de Engenharia Química
| | - Jonas Gruber
- Departamento de Química Fundamental
- Instituto de Químca da Universidade de São Paulo
- CEP 05508-000 São Paulo
- Brazil
| | - Tanja Junkers
- Institute for Materials Research (IMO)
- Hasselt University
- 3500 Hasselt
- Belgium
- Polymer Reaction Design Group
| |
Collapse
|
16
|
Yang K, Niu H, Yu H, Dong J, Wang J, Yu J, Shen K, Li Y. Synthesis of high molecular weight isobutylene-α-methylstyrene copolymers containing alkenyl groups with a half sandwich scandium initiator system under mild conditions. Polym Chem 2019. [DOI: 10.1039/c8py01749b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copolymerizations of isobutylene and two alkenyl functionalized α-MeSt derivatives respectively, catalyzed by [(C5Me4SiMe3)Sc(CH2SiMe3)2THF], at −35 °C produced high Mn random copolymers with pendant alkenyl groups.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hui Niu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hui Yu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Jinghan Dong
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Jing Wang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Jialin Yu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Kaihua Shen
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
17
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
18
|
Simal Aykac F, Aydogan C, Yagci Y. A robust strategy for the synthesis of miktoarm star copolymers by combination of ROP and photoinitiated free radical polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Yang K, Niu H, Shi Z, Tan R, Li T, Shen K, Li Y. Convenient synthesis of versatile syndiotactic polystyrene materials containing pendant alkenyl groups with a scandium catalyst system. Polym Chem 2018. [DOI: 10.1039/c8py00607e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The syndioselective copolymerization of styrene with five alkenyl functionalized styrenic monomers, with the use of a scandium catalyst, produced a new family of versatile syndiotactic polystyrene materials with pendant alkenyl groups.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hui Niu
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Zhenghai Shi
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Rui Tan
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Tingting Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Kaihua Shen
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Liaoning Key Laboratory of Polymer Science and Engineering
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
20
|
Tanaka R, Tonoko N, Kihara SI, Nakayama Y, Shiono T. Reversible star assembly of polyolefins using interconversion between boroxine and boronic acid. Polym Chem 2018. [DOI: 10.1039/c8py00519b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reversible star formation of polyolefins, with boronic acid modified chain-ends, was achieved.
Collapse
Affiliation(s)
- Ryo Tanaka
- Graduate School of Engineering
- Department of Applied Chemistry
- Hiroshima University
- Higashi-hiroshima
- 739-8527 Japan
| | - Naoki Tonoko
- Graduate School of Engineering
- Department of Applied Chemistry
- Hiroshima University
- Higashi-hiroshima
- 739-8527 Japan
| | - Shin-ichi Kihara
- Graduate School of Engineering
- Department of Chemical Engineering
- Hiroshima University
- Higashi-hiroshima
- 739-8527 Japan
| | - Yuushou Nakayama
- Graduate School of Engineering
- Department of Applied Chemistry
- Hiroshima University
- Higashi-hiroshima
- 739-8527 Japan
| | - Takeshi Shiono
- Graduate School of Engineering
- Department of Applied Chemistry
- Hiroshima University
- Higashi-hiroshima
- 739-8527 Japan
| |
Collapse
|
21
|
Huang X, Zhou D, A S, Gao Y, Wang X, Li X, Xu Q, Greiser U, Yin G, Wang W. Star Polymers from Single-Chain Cyclized/Knotted Nanoparticles as a Core. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaobei Huang
- School of Materials Science and Engineering; Sichuan University; Chengdu 610064 China
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Dezhong Zhou
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Yongsheng Gao
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Xi Wang
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Xiaolin Li
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Qian Xu
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Udo Greiser
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| | - Guangfu Yin
- School of Materials Science and Engineering; Sichuan University; Chengdu 610064 China
| | - Wenxin Wang
- Charles Institute of Dermatology; School of Medicine and Medical Science; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
22
|
Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules 2017; 22:molecules22040594. [PMID: 28387742 PMCID: PMC6154576 DOI: 10.3390/molecules22040594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/03/2022] Open
Abstract
This contribution presents an updated overview of the different copolymers containing stereoregular polystyrene blocks. Special emphasis is placed on syndiospecific and isospecific copolymerization of styrene with co-monomers (ethylene and α-olefins, conjugated and non-conjugated dienes, styrene derivatives, etc.). The catalytic systems involved are described and the polymerization mechanisms are discussed. Alternative approaches (simultaneous, living, chain-transfer and graft copolymerization) and the resulting detailed structures and characteristics of the copolymers are also reported.
Collapse
|