1
|
Ansari AA, Muthumareeswaran M, Lv R. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Upconversion of NaYF4: Yb, Er Nanoparticles Co-doped with Zr 4+ for Magnetic Phase Transition and Biomedical Imaging Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Ansari AA, Labis JP, Khan A. Facile synthesized NaGdF 4 :Yb, Er peanut-shaped, highly biocompatible, colloidal upconversion nanospheres. LUMINESCENCE 2022; 37:1048-1056. [PMID: 35411678 DOI: 10.1002/bio.4249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/11/2022]
Abstract
A facile method was used for the synthesis of peanut-shaped very emissive NaGdF4 :Yb, Er upconversion nanospheres (UCNSs) at lower temperatures with uniform size distribution. Crystallographic structure, phase purity, morphology, thermal robustness, biocompatibility, colloidal stability, surface chemistry, optical properties, and luminesce properties were explored by X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM), zeta potential, Thermogravimetric/thermal differential analysis (TGA/DTA), Fourier transform infrared (FTIR), UV/visible and photoluminescence spectroscopic tools. XRD pattern verified the construction of a single-phase, highly-crystalline NaGdF4 phase with a hexagonal structure. Peanut-shaped morphology of the sample was obtained from SEM micrographs which were validated from high-resolution TEM images, have an equatorial diameter of 170-200 nm and a length of 220-230 nm, with irregular size, monodispersed, porous structure, and rough surface of the particles. The positive zeta potential value exhibited good biocompatibility along with high colloidal stability as observed from the absorption spectrum. The prepared UCNSs revealed high dispersibility, irregular size peanut-shaped morphology, rough surface, good colloidal stability, and excellent biocompatibility in aqueous media. A hexagonal phase NaGdF4 doped with Yb, and Er UCNSs revealed the characteristics of highly dominant emissions located at 520-525, 538-550, and 659-668 nm are corresponding to the 2 H11/2 →4 I15/2 , 4 S3/2 →4 I15/2 , and 4 F9/2 →4 I15/2 transition of Er3+ ions, respectively, as a result of energy transfer from sensitizer Yb3+ ion to emitter Er3+ ion.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Biocompatible NaYF4:Yb,Er upconversion nanoparticles: Colloidal stability and optical properties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214040] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Ansari AA, Parchur AK, Labis JP, Shar MA. Physiochemical characterization of highly biocompatible, and colloidal LaF 3:Yb/Er upconversion nanoparticles. Photochem Photobiol Sci 2021; 20:1195-1208. [PMID: 34449078 DOI: 10.1007/s43630-021-00092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Highly colloidal upconversion nanoparticles (UCNPs) were synthesized at low temperatures by the thermal decomposition process. The structure, morphology, crystallinity, surface chemistry, and optical properties were systematically optimized and studied through various spectroscopic techniques. X-ray diffraction (XRD) patterns have shown the formation of single-phase, highly purified, well-crystalline, hexagonal LaF3 NPs, while the TEM micrographs show small, irregular sizes, spherically shaped, and aggregated polycrystalline UCNPs with an average crystalline size of about 8-15 nm. The Negative Zeta Potential value exhibits good biocompatibility of the UCNPs, which supports the idea that surface-anchored hydroxyl groups facilitate the stabilization of the NPs in aqueous media, as well as enhance biomolecules' tagging efficiency. The absorption spectrum, Zeta Potential, and hydrodynamic size that were measured in aqueous media illustrate excellent dispersibility, colloidal stability, biocompatibility, and cytotoxicity character of the UCNPs. Zeta potential and MTT assay studies illustrated high biocompatibility, it could be due to the surface-anchored hydroxyl groups. The nanoproduct demonstrates an excellent UC luminescence spectrum (i.e., prominent green emission 4S3/2 → 4I/15/2) upon irradiation by the 980-nm laser diode. TEM micrographs, further, revealed that this optically active material with aqueous sensitivities, porous crystal structure, and excellent UCNPs, could be a favorable candidate for potential photonics-based bio-related applications.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia.
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
| | - Muhammad Ali Shar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
| |
Collapse
|
9
|
Ansari AA, Parchur AK, Thorat ND, Chen G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Ansari AA, Parchur AK, Labis JP, Shar MA, Khan A. Highly hydrophilic CaF2:Yb/Er upconversion nanoparticles: Structural, morphological, and optical properties. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ansari AA, Nazeeruddin M, Tavakoli MM. Organic-inorganic upconversion nanoparticles hybrid in dye-sensitized solar cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213805] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Qin X, Zhang X, Zhang W, Li C, Zhu C. Facile synthesis of NaYF4:Ln/NaYF4:Eu composite with up-conversion and down-shifting luminescence. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
In-vitro cytotoxicity evaluation of surface design luminescent lanthanide core/shell nanocrystals. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Liu L, Hua R, Chen B, Qi X, Zhang W, Zhang X, Liu Z, Ding T, Yang S, Zhang T, Cheng L. Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors. NANOTECHNOLOGY 2019; 30:375703. [PMID: 31163404 DOI: 10.1088/1361-6528/ab26dd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Upconversion nanoparticle (UCNP)-based luminescence resonance energy transfer (LRET) systems are a powerful tool widely used to detect organic molecules or metal ions because of their simplicity and high sensitivity. The sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs, as a highly selective and sensitive aqueous probe for detecting nitroaromatics, has been designed and prepared by a cothermolysis method and modified with polyetherimide to acquire amine groups on the surface of the core/shell UCNPs. The detection principle of nitroaromatics is based on LRET, which forms the Meisnheimer complex between the electron-deficient cyclobenzene of nitroaromatics and the electron-rich amino group on the surface of the sandwich structure UCNPs. As a consequence, nitroaromatics can be brought into close proximity to the sandwich structure UCNPs. With the increase of nitroaromatics (2,4,6-trinitrophenol and 2,4,6-trinitrotoluene) concentrations, the sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs display a dramatic luminescent quenching effect at 407 nm and 540 nm under 980 nm excitation. The luminescent quenching intensity of the sandwich structure UCNPs is linearly correlated to the concentration of the nitroaromatics. The detection limit of 2,4,6-trinitrophenol (TNP) and 2,4,6-trinitrotoluene (TNT) are 0.78 and 0.77 ng ml-1, respectively. Therefore, the sandwich structure of NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs can act as a valuable probe to detect nitroaromatics in public safety and security conditions.
Collapse
Affiliation(s)
- Litao Liu
- College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600, People's Republic of China. Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Physico-chemical properties and catalytic activity of the sol-gel prepared Ce-ion doped LaMnO 3 perovskites. Sci Rep 2019; 9:7747. [PMID: 31123284 PMCID: PMC6533315 DOI: 10.1038/s41598-019-44118-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 11/08/2022] Open
Abstract
Ce-doped LaMnO3 perovskite ceramics (La1−xCexMnO3) were synthesized by sol-gel based co-precipitation method and tested for the oxidation of benzyl alcohol using molecular oxygen. Benzyl alcohol conversion of ca. 25–42% was achieved with benzaldehyde as the main product. X-ray diffraction (XRD), thermogravimetric analysis (TGA), BET surface area, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (H2-TPR), temperature-programmed oxidation (O2-TPO), FT-IR and UV-vis spectroscopic techniques were used to examine the physiochemical properties. XRD analysis demonstrates the single phase crystalline high purity of the perovskite. The Ce-doped LaMnO3 perovskite demonstrated reducibility at low-temperature and higher mobility of surface O2-ion than their respective un-doped perovskite. The substitution of Ce3+ ion into the perovskite matrix improve the surface redox properties, which strongly influenced the catalytic activity of the material. The LaMnO3 perovskite exhibited considerable activity to benzyl alcohol oxidation but suffered a slow deactivation with time-on-stream. Nevertheless, the insertion of the A site metal cation with a trivalent Ce3+ metal cation led to an enhanced in catalytic performance because of atomic-scale interactions between the A and B active site. La0.95Ce0.05MnO3 catalyst demonstrated the excellent catalytic activity with a selectivity of 99% at 120 °C.
Collapse
|
17
|
Ansari AA, Ahmad N, Labis JP, El-Toni AM, Khan A. Aqueous dispersible green luminescent yttrium oxide:terbium microspheres with nanosilica shell coating. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:348-355. [PMID: 30583166 DOI: 10.1016/j.saa.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Tb-doped Y2O3 microspheres (MSs) were prepared via a homogeneous thermal degradation process at a low temperature and then coated with a nanosilica shell (Y2O3:Tb@SiO2) using a sol-gel process. The core MSs were highly crystalline and spherical with a porous surface, single cubic phase, and particle size of 100-250 nm. Transmission electron microscopy (TEM) images clearly showed the spherical shape of the as-prepared core MSs, which were fully covered with a thick and mesoporous nanosilica shell. Fourier transform infrared (FTIR) spectra displayed the well-resolved infrared absorption peaks of silica (SiO, SiOSi, etc.), confirming the presence of the silica surface coating. The core MSs retained their spherical shape even after heat treatment and subsequent silica surface coating. It was observed that the core/shell MSs are easily dispersible in aqueous media and form a semi-transparent colloidal solution. Ultraviolet/visible and zeta potential studies were tested to prove the changes in the surface chemistry of the as-designed core/shell MSs and compare with their core counterpart. The growth of the amorphous silica shell not only increased the particle size but also enhanced remarkably the solubility and colloidal stability of the MSs in aqueous media. The strongest emission lines originating from the characteristic intra-shell 4f-4f electronic transitions of Tb ions were quenched after silica layer deposition, but the MSs still showed strong green (5D4 → 7F5 at 530-560 nm as most dominant) emission efficiency, which indicates great potential in fluorescent bio-probes. The emission intensity is discussed in relation to the quenching mechanism induced by surface silanol (Si-OH) groups, particle size, and surface charge.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naushad Ahmad
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
A novel photocatalyst, Y2SiO5:Pr3+,Li/Pt-NaNbxTa1−xO3, for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Mesoporous multi-silica layer-coated Y 2O 3:Eu core-shell nanoparticles: Synthesis, luminescent properties and cytotoxicity evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:365-373. [PMID: 30606544 DOI: 10.1016/j.msec.2018.11.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/21/2018] [Accepted: 11/26/2018] [Indexed: 11/23/2022]
Abstract
Mesoporous multi-layered silica-coated luminescent Y2O3:Eu nanoparticles (NPs) were prepared by a urea-based decomposition process, and their surfaces were gradually modified with nanoporous and mesoporous silica layers using modified sol-gel methods. The synthesized luminescent core-shell NPs were characterized thoroughly to investigate their structural, morphological, thermal, optical, photo luminescent properties and their surface chemistry. The morphology of the core NPs were nearly spherical in shape and were nano-sized grains. The observed luminescent efficiency of the mesoporous multi-layered silica-coated luminescent core NPs was gradually reduced because of bond formation between the Y2O3:Eu core and the amorphous silica shell via YOSiOH bridges on the surface of the NPs; the bonds suppressed the non-radiative transition pathways. Biocompatibility tests on Human breast cancer cells using the 3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide and lactate dehydrogenase assays indicated that the core-shell NPs were non-toxic even at high concentrations. The mesoporous SiO2 layer played a key role in perfecting the solubility, biocompatibility, and non-toxicity of the NPs. The zeta potential, surface chemistry (Fourier transform infrared spectroscopy), and optical absorption spectral analyses revealed the high hydrophilicity of the as-prepared core-shell NPs because of the active surface-functionalized silanol (SiOH) groups, which could potentially offer many exciting opportunities in photonic-based biomedical applications.
Collapse
|
20
|
Role of Mn 2+ Doping in the Preparation of Core-Shell Structured Fe₃O₄@upconversion Nanoparticles and Their Applications in T₁/T₂-Weighted Magnetic Resonance Imaging, Upconversion Luminescent Imaging and Near-Infrared Activated Photodynamic Therapy. NANOMATERIALS 2018; 8:nano8070466. [PMID: 29949933 PMCID: PMC6070927 DOI: 10.3390/nano8070466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 01/10/2023]
Abstract
Core-shell (C/S) structured upconversion coated Fe3O4 nanoparticles (NPs) are of great interest due to their potential as magnetic resonance imaging (MRI) and upconversion luminescent (UCL) imaging agents, as well as near-infrared activated photodynamic therapy (PDT) platforms. When C/S structured Fe3O4@Mn2+-doped NaYF4:Yb/Er NPs were prepared previously, well-defined C/S-NPs could not be formed without the doping of Mn2+ during synthesis. Here, the role of Mn2+ doping on the synthesis of core-shell structured magnetic-upconversion nanoparticles (MUCNPs) is investigated in detail. Core-shell-shell nanoparticles (C/S/S-MUCNPs) with Fe3O4 as the core, an inert layer of Mn2+-doped NaYF4 and an outer shell consisting of Mn2+-doped NaYF4:Yb/Er were prepared. To further develop C/S/S-MUCNPs applications in the biological field, amphiphilic poly(maleic anhydride-alt-1-octadecene) (C18PMH) modified with amine functionalized methoxy poly(ethylene glycol) (C18PMH-mPEG) was used as a capping ligand to modify the surface of C/S/S-MUCNPs to improve biocompatibility. UCL imaging, T1-weighted MRI ascribed to the Mn2+ ions and T2-weighted MRI ascribed to the Fe3O4 core of C/S/S-MUCNPs were then evaluated. Finally, chlorine e6 (Ce6) was loaded on the C/S/S-MUCNPs and the PDT performance of these NPs was explored. Mn2+ doping is an effective method to control the formation of core-shell structured MUCNPs, which would be potential candidate as multifunctional nanoprobes for future T1/T2-weighted MR/UCL imaging and PDT platforms.
Collapse
|
21
|
Ansari AA, Aldalbahi A, Labis JP, El-Toni AM, Ahamed M, Manthrammel M. Highly biocompatible, monodispersed and mesoporous La(OH)3:Eu@mSiO2 core-shell nanospheres: Synthesis and luminescent properties. Colloids Surf B Biointerfaces 2018; 163:133-139. [DOI: 10.1016/j.colsurfb.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/25/2022]
|
22
|
Ansari AA. Silica-modified luminescent LaPO 4 :Eu@LaPO 4 @SiO 2 core/shell nanorods: Synthesis, structural and luminescent properties. LUMINESCENCE 2018. [PMID: 28816400 DOI: 10.1016/j.solidstatesciences.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Monoclinic-type tetragonal LaPO4 :Eu (core) and LaPO4 :Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Ansari AA. Facile Synthesis Method for the Preparation of Large-scale Ultra-small GdPO4
:Tb and GdPO4
:Tb@LaPO4
Nanowires. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anees A. Ansari
- King Abdullah Institute for Nanotechnology; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
24
|
Ansari AA. Role of surface modification on physicochemical properties of luminescent YPO4:Tb nanorods. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Ansari AA. Silica-modified luminescent LaPO 4 :Eu@LaPO 4 @SiO 2 core/shell nanorods: Synthesis, structural and luminescent properties. LUMINESCENCE 2017; 33:112-118. [PMID: 28816400 DOI: 10.1002/bio.3379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
Monoclinic-type tetragonal LaPO4 :Eu (core) and LaPO4 :Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Hao H, Lu H, Ao G, Song Y, Wang Y, Zhang X. Enhanced green emissions of Er3+
/Yb3+
co-doped Gd2
(MoO4
)3
by co-excited up-conversion processes. LUMINESCENCE 2017; 33:4-9. [DOI: 10.1002/bio.3364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/14/2017] [Accepted: 05/13/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Haoyue Hao
- Department of Physics; Harbin Institute of Technology; Harbin P. R. China
| | - Hongyu Lu
- Department of Physics; Harbin Institute of Technology; Harbin P. R. China
| | - Guanghong Ao
- Department of Applied Science; Harbin University of Science and Technology; Harbin P. R. China
| | - Yinglin Song
- Department of Physics; Harbin Institute of Technology; Harbin P. R. China
| | - Yuxiao Wang
- Department of Physics; Harbin Institute of Technology; Harbin P. R. China
| | - Xueru Zhang
- Department of Physics; Harbin Institute of Technology; Harbin P. R. China
| |
Collapse
|
27
|
Ansari AA, Aldalbahi AK, Labis JP, Manthrammel MA. Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
Ansari AA. Photochemical studies of monodispersed YPO 4 :Eu microspheres: The role of surface modification on structural and luminescence properties. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ansari AA. Comparative Structural, Optical, and Photoluminescence Studies of YF3
:Pr, YF3
:Pr@LaF3
, and YF3
:Pr@LaF3
@SiO2
Core-Shell Nanocrystals. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anees A. Ansari
- King Abdullah Institute for Nanotechnology; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
30
|
Impact of surface coating on morphological, optical and photoluminescence properties of YF 3 :Tb 3+ nanoparticles. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Ansari AA, Manthrammel MA. Surface Coating Effect on Structural, Optical and Photoluminescence Properties of Eu3+ Doped Yttrium Fluoride Nanoparticles. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0463-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Li M, Liu X, Liu L, Ma B, Li B, Zhao X, Tong W, Wang X. β-NaYF4:Yb,Tm: upconversion properties by controlling the transition probabilities at the same energy level. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00121a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influencing factors of the special upconversion properties of Tm3+ have been studied in the β-NaYF4:Yb,Tm system.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Li Liu
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Bing Ma
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Benxian Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xudong Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wenming Tong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiaofeng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|