1
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
2
|
Sanati-Tirgan P, Eshghi H, Mohammadinezhad A. Designing a new method for growing metal-organic framework (MOF) on MOF: synthesis, characterization and catalytic applications. NANOSCALE 2023; 15:4917-4931. [PMID: 36779859 DOI: 10.1039/d2nr06729c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks as a unique class of high-surface-area materials have gained considerable attention due to their characteristic properties. In this perspective, herein, we report an eco-friendly and inexpensive route for the synthesis of 4(3H)-quinazolinones using magnetically separable core-shell-like bimetallic Fe3O4-MAA@Co-MOF@Cu-MOF NPs as environmentally-friendly heterogeneous catalysts. To the best of our knowledge, this is the first example of the integration of two different types of MOFs, which contain two different metal ions (Co2+ in the core and Cu2+ in the shell) using an external ligand. Our study not only introduces a novel nanostructured catalyst for the organic reaction but also presents a new strategy for the combination of two MOFs in one particle at the nanometer level. To survey the structural and compositional features of the synthesized nanocatalyst, a variety of spectroscopic and microscopic techniques including FT-IR, XRD, BET, TEM, HR-TEM, FE-SEM, EDX, EDX-mapping, TGA, VSM, and ICP-OES were employed. The combination of magnetic Co-MOF with Cu-MOF leads to achieving unique structural and compositional properties for Fe3O4-MAA@Co-MOF@Cu-MOF NPs with a particle size of 20-70 nm, mesostructure, and relatively large specific surface area (236.16 m2 g-1). The as-prepared nanostructured catalyst can be an excellent environment catalyst for the synthesis of a wide library of 4(3H)-quinazolinones derivatives, including electron-donating and electron-withdrawing aromatic, heteroaromatic, and aliphatic compounds under solvent-free conditions much better than the parent precursors. Moreover, by investigating the longevity of the nanocatalyst, the conclusion could be derived that the aforesaid nanocatalyst is stable under reaction conditions and could be recycled for at least seven recycle runs without a discernible decrease in its catalytic activity.
Collapse
Affiliation(s)
- Parvin Sanati-Tirgan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| | - Arezou Mohammadinezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran.
| |
Collapse
|
3
|
Shukla S, Nishanth Rao R, Bhuktar H, Edwin RK, Jamma T, Medishetti R, Banerjee S, Giliyaru VB, Shenoy GG, Oruganti S, Misra P, Pal M. Wang resin catalysed sonochemical synthesis of pyrazolo[4,3-d]pyrimidinones and 2,3-dihydroquinazolin-4(1H)-ones: Identification of chorismate mutase inhibitors having effects on Mycobacterium tuberculosis cell viability. Bioorg Chem 2023; 134:106452. [PMID: 36889201 DOI: 10.1016/j.bioorg.2023.106452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The enzyme chorismate mutase (or CM that is vital for the survival of bacteria) is an interesting pharmacological target for the identification of new anti-tubercular agents. The 5,5-disibstituted pyrazolo[4,3-d]pyrimidinone derivatives containing the fragment based on 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide were designed and explored as the potential inhibitors of chorismate mutase. Based on encouraging docking results of two representative molecules evaluated in silico against MtbCM (PDB: 2FP2) the Wang resin catalysed sonochemical synthesis of target N-heteroarenes were undertaken. The methodology involved the reaction of 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide with the appropriate cyclic/acyclic ketones to afford the desired products in acceptable (51-94%) yields. The methodology was also extended successfully towards the synthesis of 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones in excellent (85-90%) yields. In vitro MTT assay against the RAW 264.7 cell line followed by enzymatic assay against MtbCM identified 3b and 3c as active compounds that showed two H-bonding via their NH (at position 6) and CO group with MtbCM in silico and encouraging (54-57%) inhibition at 30 µM in vitro. Notably, none of the 2,2-disubstituted 2,3-dihydroquinazolin-4(1H)-ones showed any significant inhibition of MtbCM suggesting the favourable role of the pyrazole moiety in case of pyrazolo[4,3-d]pyrimidinones. The favourable role of cyclopentyl ring attached to the pyrazolo[4,3-d]pyrimidinone moiety and that of two methyl groups in place of cyclopentyl ring was also indicated by the SAR study. Besides showing effects against MtbCM in the concentration response study, 3b and 3c showed little or no effects on mammalian cell viability up to 100 µM in an MTT assay but decreased the % Mtb cell viability at 10-30 µM with > 20% decrease at 30 µM in an Alamar Blue Assay. Moreover, no adverse effects were noted for these compounds when tested for teratogenicity and hepatotoxicity in zebrafish at various concentrations. Overall, being the only example of MtbCM inhibitors that showed effects on Mtb cell viability the compound 3b and 3c are of further interest form the view point of discovery and development of new anti-tubercular agents.
Collapse
Affiliation(s)
- Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - R Nishanth Rao
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Rebecca Kristina Edwin
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Trinath Jamma
- Department of Biological Sciences, B-225, BITS Pilani-Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500 078, Telangana, India
| | - Raghavender Medishetti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Varadaraj Bhat Giliyaru
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Gautham G Shenoy
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Srinivas Oruganti
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Parimal Misra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India.
| |
Collapse
|
4
|
Feng M, Yan Q, Yang L, Ye Y, Liu G, Wang W. Selective synthesis of 2‐substituted 2,3‐dihydroquinazolin‐4(1
H
)‐ones and quinazolin‐4(3
H
)‐ones catalyzed by Schiff base dioxomolybdenum(VI) complex. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mengmeng Feng
- School of Chemistry and Material Science Ludong University Yantai China
| | - Qingmin Yan
- School of Chemistry and Material Science Ludong University Yantai China
| | - Lan Yang
- School of Chemistry and Material Science Ludong University Yantai China
| | - Yanan Ye
- School of Chemistry and Material Science Ludong University Yantai China
| | - Gang Liu
- School of Chemistry and Material Science Ludong University Yantai China
| | - Weili Wang
- School of Chemistry and Material Science Ludong University Yantai China
| |
Collapse
|
5
|
Synthesis of a Pyrrolo[1,2- a]quinazoline-1,5-dione Derivative by Mechanochemical Double Cyclocondensation Cascade. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175671. [PMID: 36080434 PMCID: PMC9478961 DOI: 10.3390/molecules27175671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022]
Abstract
N-heterocyclic compounds, such as quinazolinone derivatives, have significant biological activities. Nowadays, as the demand for environmentally benign, sustainable processes increases, the application of compounds from renewable sources, easily separable heterogeneous catalysts and efficient, alternative activation methods is of great importance. In this study, we have developed a convenient, green procedure for the preparation of 3a-methyl-2,3,3a,4-tetrahydropyrrolo[1,2-a]quinazoline-1,5-dione through a double cyclocondensation cascade using anthranilamide and ethyl levulinate. Screening of various heterogeneous Brønsted acid catalysts showed that Amberlyst® 15 is a convenient choice. By applying mechanochemical activation in the preparation of this N-heterotricyclic compound for the first time, it was possible to shorten the necessary time to three hours compared to the 24 h needed under conventional conditions to obtain a high yield of the target product.
Collapse
|
6
|
Sulfated tin oxide (SO4−2/SnO2): an efficient heterogeneous solid superacid catalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04670-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Orasugh JT, Ray SS. Prospect of DFT Utilization in Polymer-Graphene Composites for Electromagnetic Interference Shielding Application: A Review. Polymers (Basel) 2022; 14:polym14040704. [PMID: 35215617 PMCID: PMC8880781 DOI: 10.3390/polym14040704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
The improvement in current materials science has prompted a developing need to capture the peculiarities that determine the properties of materials and how they are processed on an atomistic level. Quantum mechanics laws control the interface among atoms and electrons; thus, exact and proficient techniques for fixing the major quantum-mechanical conditions for complex many-particle, many-electron frameworks should be created. Density functional theory (DFT) marks an unequivocal advance in these endeavours. DFT has had a rapid influence on quintessential and industrial research during the last decade. The DFT system describes periodic structural systems of 2D or 3D electronics with the utilization of Bloch’s theorem in the direction of Kohn–Sham wavefunctions for the significant facilitation of these schemes. This article introduces and discusses the infinite systems modelling approach required for graphene-based polymer composites or their hybrids. Aiming to understand electronic structure computations as per physics, the impressions of band structures and atomic structure envisioned along with orbital predicted density states are beneficial. Convergence facets coupled with the basic functions number and the k-points number are necessary to explain for every physicochemical characteristic in these materials. Proper utilization of DFT in graphene-based polymer composites for materials in EMI SE presents the potential of taking this niche to unprecedented heights within the next decades. The application of this system in graphene-based composites by researchers, along with their performance, is reviewed.
Collapse
Affiliation(s)
- Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa;
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Suprakash Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doorfontein, Johannesburg 2028, South Africa;
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Correspondence: ; Tel.: +27-12-841-2388
| |
Collapse
|
8
|
[HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Zhang R, Ma R, Fu Q, Chen J, Ma Y. I 2 /PhNO 2 Mediated Synthesis of Quinazolin-4(3 H)-ones by C(CO)—C Bond Oxidative Cleavage of Acetophenones and Amination with 2-Aminobenzamides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Gnyawali K, Kirinde Arachchige PT, Yi CS. Synthesis of Flavanone and Quinazolinone Derivatives from the Ruthenium-Catalyzed Deaminative Coupling Reaction of 2'-Hydroxyaryl Ketones and 2-Aminobenzamides with Simple Amines. Org Lett 2021; 24:218-222. [PMID: 34958227 DOI: 10.1021/acs.orglett.1c03870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) with 3,4,5,6-tetrachloro-1,2-benzoquinone (L1) was found to be a highly effective catalyst for the deaminative coupling reaction of 2'-hydroxyaryl ketones with simple amines to form 3-substituted flavanone products. The analogous deaminative coupling reaction of 2-aminobenzamides with branched amines directly formed 3,3-disubstituted quinazolinone products. The catalytic method efficiently installs synthetically useful flavanone and quinazolinone core structures without employing any reactive reagents.
Collapse
Affiliation(s)
- Krishna Gnyawali
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
11
|
Soni J, Sethiya A, Sahiba N, Joshi D, Agarwal S. Graphene Oxide as Metal-Free Catalyst in the Two-Component Reaction to Generate Some Novel Perimidines and Antimicrobial Evaluation. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2019803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Deepkumar Joshi
- Department of Chemistry, Sheth M.N. Science College, Patan, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
12
|
Zhang Y, Zhou Z, Li Z, Hu K, Zha Z, Wang Z. Iodine-mediated electrochemical C(sp 3)-H cyclization: the synthesis of quinazolinone-fused N-heterocycles. Chem Commun (Camb) 2021; 58:411-414. [PMID: 34897313 DOI: 10.1039/d1cc05865g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient iodine-mediated electrochemical C(sp3)-H cyclization was developed under mild conditions. A variety of functionalized quinazolinone-fused N-heterocycles can be obtained with good to excellent yields by virtue of this method. The reaction features a broad substrate scope and scalability, and is metal-free and chemical oxidant-free.
Collapse
Affiliation(s)
- Yan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenghong Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhibin Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Kangfei Hu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
13
|
Rao MS, Hussain S. One-Pot, Borax-mediated synthesis of structurally diverse N, S-heterocycles in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Yadav P, Awasthi SK. Probing the catalytic activity of highly efficient sulfonic acid fabricated cobalt ferrite magnetic nanoparticles for the clean and scalable synthesis of dihydro, spiro and bis quinazolinones. NEW J CHEM 2021. [DOI: 10.1039/d1nj01149a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An exceptionally productive, rapid, simple, and eco-friendly approach for the synthesis of 2,3-dihydroquinazolin-4(1H)-one has been developed utilizing acidic magnetically retrievable cobalt ferrite nanoparticles (CFNP@SO3H).
Collapse
Affiliation(s)
- Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Satish K. Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
15
|
Nan J, Chen P, Zhang Y, Yin Y, Wang B, Ma Y. Metal-Free Synthesis of 2-Substituted Quinolines via High Chemoselective Domino Condensation/Aza-Prins Cyclization/Retro-Aldol between 2-Alkenylanilines with β-Ketoesters. J Org Chem 2020; 85:14042-14054. [DOI: 10.1021/acs.joc.0c02063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuxin Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yun Yin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
16
|
Palladium nanoparticles anchored polydopamine-coated graphene oxide/Fe3O4 nanoparticles (GO/Fe3O4@PDA/Pd) as a novel recyclable heterogeneous catalyst in the facile cyanation of haloarenes using K4[Fe(CN)6] as cyanide source. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Rai VK, Mahata S, Kashyap H, Singh M, Rai A. Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Curr Org Synth 2020; 17:164-191. [PMID: 32538718 DOI: 10.2174/1570179417666200115110403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/28/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
Abstract
This work is based on various bio-reduction of graphene oxide into reduced graphene oxide and their applications in organic synthesis and group transformations. Graphene oxide, with abundant oxygencontaining functional groups on its basal plane, provides potential advantages, including excellent dispersibility in solvents and the good heterogeneous catalyst. This manuscript reviews various methods of synthesis of graphene and graphene oxide and a comparative study on their advantages and disadvantages, how to overcome disadvantages and covers extensive relevant literature review. In the last few years, investigation based on replacing the chemical reduction methods by some bio-compatible, chemical/impurity-free rGO including flash photo reductions, hydrothermal dehydration, solvothermal reduction, electrochemical approach, microwave-assisted reductions, light and radiation-induced reductions has been reported. Particularly, plant extracts have been applied significantly as an efficient reducing agent due to their huge bioavailability and low cost for bio-reduction of graphene oxide. These plant extracts mainly contain polyphenolic compounds, which readily get oxidized to the corresponding unreactive quinone form, which are the driving force for choosing them as bio-compatible catalyst. Currently, efforts are being made to develop biocompatible methods for the reduction of graphene oxide. The reduction abilities of such phytochemicals have been reported in the synthesis and stabilization of various nanoparticles viz. Ag, Au, Fe and Pd. Various part of plant extract has been applied for the green reduction of graphene oxide. Furthermore, the manuscript describes the catalytic applications of graphene oxide and reduced graphene oxide nanosheets as efficient carbo-catalysts for valuable organic transformations. Herein, important works dedicated to exploring graphene-based materials as carbocatalysts, including GO and rGO for organic synthesis including various functional group transformations, oxidation, reduction, coupling reaction and a wide number of multicomponent reactions have been highlighted. Finally, the aim of this study is to provide an outlook on future trends and perspectives for graphene-based materials in metal-free carbo-catalysis in green synthesis of various pharmaceutically important moieties.
Collapse
Affiliation(s)
- Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Hemant Kashyap
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
18
|
Sepideh A, Hassan K, Mohammad M. Pd-Catalyzed Carbonylation-cyclization of N′-(2-bromophenyl)benzamidines by Chloroform as a CO Precursor for the Synthesis of Quinazolin- 4(3H)-ones. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190514085642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present an efficient method for the synthesis of quinazolin-4(3H)-ones via Pdcatalyzed
carbonylation-cyclization of N′-(2-bromophenyl)benzamidines. Chloroform cleanly generated
CO under mild conditions. This method allows for the carbonylation-cyclization of N′-(2-
bromophenyl)benzamidines in the presence of Pd(OAc)2 to give quinazolin-4(3H)-ones in good to
excellent yields.
Collapse
Affiliation(s)
- Abbasian Sepideh
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kabirifard Hassan
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdavi Mohammad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall V. Larvicidal Activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against Malaria Vector Anopheles arabiensis, In Silico ADMET Prediction and Molecular Target Investigation. Molecules 2020; 25:molecules25061316. [PMID: 32183140 PMCID: PMC7144721 DOI: 10.3390/molecules25061316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
- Correspondence:
| | - Pushpalatha Ramachandra
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Raquel M. Gleiser
- CREAN-IMBIV (UNC-CONICET), Av. Valparaíso s.n., Córdoba, Argentina and FCEFyN, AV. Sarsfield 299, Universidad Nacional de Cordoba, Cordoba 5000, Argentina;
| | - Subhrajyoti Bhandary
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; (S.B.); (D.C.)
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Bandar E. Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Rashmi Venugopala
- Department of Public Health Medicine, University of KwaZulu-Natal, Howard College Campus, Durban 4001, South Africa;
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Sandeep Chandrashekharappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, TIFR, GKVK, Bellary Road, Bangalore 560 065, India;
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Osama I. Alwassil
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia;
| | - Sara Nidal Abed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan; (P.K.D.); (S.N.A.); (Y.A.B.)
| | - Ramachandra Palenge
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India; (P.R.); (R.P.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Shinu Pottathil
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Meravanige B. Girish
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (C.T.); (M.A.M.); (B.E.A.); (M.A.); (A.B.N.); (N.S.); (H.E.K.); (M.H.); (S.H.A.)
| | - Viresh Mohanlall
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa;
| |
Collapse
|
20
|
Singhal A, Kumari P, Nisa K. Facile One-Pot Friedlander Synthesis of Functionalized Quinolines using Graphene Oxide Carbocatalyst. Curr Org Synth 2020; 16:154-159. [PMID: 31965929 DOI: 10.2174/1570179415666181002114621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinolines represent an important class of bioactive molecules which are present in various synthetic drugs, biologically active natural compounds and pharmaceuticals. Quinolines find their potential applications in various chemical and biomedical fields. Thereby, the demand for more efficient and simple methodologies for the synthesis of quinolines is growing rapidly. OBJECTIVE The green one-pot Friedlander Synthesis of Functionalized Quinolines has been demonstrated by using graphene oxide as a carbocatalyst. METHOD The graphene oxide catalyzed condensation reaction of 2-aminoaryl carbonyl compounds with different cyclic/ acyclic/ aromatic carbonyl compounds in methanol at 70°C affords different quinoline derivatives. RESULTS The reaction has been examined in different protic and aprotic solvents and the best yield of quinoline is observed in methanol at 70°C. CONCLUSION The present method of quinoline synthesis offers various advantages over other reported methods such as short reaction time, high yield of product, recycling of catalyst and simple separation procedure. The graphene oxide carbocatalyst can be easily recovered from the reaction mixture by centrifugation and then can be reused several times without any significant loss in its activity.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Kharu Nisa
- Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
21
|
Gajare S, Jagadale M, Naikwade A, Bansode P, Patil P, Rashinkar G. An expeditious synthesis of 2,3‐dihydroquinozoline‐4(1
H
)‐ones using graphene‐supported sulfonic acid. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Megha Jagadale
- Department of ChemistryShivaji University Kolhapur India
| | | | | | - Pradnya Patil
- Department of ChemistryShivaji University Kolhapur India
| | | |
Collapse
|
22
|
Synthesis of quinazolin-4(3H)-ones via the reaction of isatoic anhydride with benzyl azides in the presence of potassium tert-butoxide in DMSO. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02563-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Tan C, Yang K, Dong J, Liu Y, Liu Y, Jiang J, Cui Y. Boosting Enantioselectivity of Chiral Organocatalysts with Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets. J Am Chem Soc 2019; 141:17685-17695. [PMID: 31608623 DOI: 10.1021/jacs.9b07633] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of methodologies for inducing and tailoring enantioselectivities of catalysts is an important issue in asymmetric catalysis. In this work, we demonstrate for the first time that chiral molecular catalysts can be boosted from completely nonselective to highly enantioselective when installed in nanostructured metal-organic frameworks (MOFs). Exfoliation of layered crystals is one of the most direct synthetic routes to unltrathin nanosheets, but its use in MOFs is limited by the availability of layered MOFs. We illustrate that layered MOFs can be designed using ligand-capped metal clusters and angular organic linkers. This leads to the synthesis of two three-dimensional (3D) layered porous MOFs from Zn4-p-tert-butylsulfonyl calix[4]arene and chiral angular 1,1'-binaphthol/-biphenol dicarboxylic acids, which can be ultrasonic exfoliated into one- and two-layer nanosheets. The obtained MOF materials are efficient catalysts for asymmetric cascade condensation and cyclization of 2-aminobenzamide and aldehydes to produce 2,3-dihyroquinazolinones. While both binaphthol and biphenol display no enantioselectivity, restriction of their freedom in the MOFs leads to 56-90% and 46-72% ee, respectively, which are increased to 72-94% and 64-82% ee after exposure to external surfaces of the flexible nanosheets. Moreover, the MOF crystals and nanosheets exhibit highly sensitive fluorescent enhancement in the presence of chiral amino alcohols with enantioselectivity factors being, respectively, increased up to 1.4 and 2.3 times of the values of the diols, allowing them to be utilized in chiral sensing. Therefore, the observed enantioselectivities increase in the order organocatalyst < MOF crystals < MOF nanosheets in both catalysis and sensing. This work not only provides a strategy to make 3D layered MOFs and their untrathin nanosheets but also paves the way to utilize nanostructured MOFs to manipulate enantioselectivities of molecular catalysts.
Collapse
Affiliation(s)
- Chunxia Tan
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 Singapore
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yuhao Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117576 Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
24
|
Emerging Trends in the Syntheses of Heterocycles Using Graphene-based Carbocatalysts: An Update. Top Curr Chem (Cham) 2019; 377:13. [PMID: 31054016 DOI: 10.1007/s41061-019-0238-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/16/2019] [Indexed: 01/24/2023]
Abstract
Graphene-based carbocatalysts owing to numerous amazing properties such as large specific surface area, high intrinsic mobility, excellent thermal and electrical conductivities, chemical stability, ease of functionalization, simple method of preparation, effortless recovery and recyclability have gained a superior position amongst the conventional homogeneous and heterogeneous catalysts. In this review, an endeavor has been made to highlight the syntheses of diverse heterocyclic compounds catalyzed by graphene-based catalysts. Further, the study also reveals that all the catalysts could be reused several times without significant loss in their catalytic activity. Additionally, most of the reactions catalyzed by graphene-based carbocatalysts were carried out at ambient temperature and under solvent-free conditions. Thus, the graphene-based catalysts do not merely act as efficient catalysts but also serve as sustainable, green catalysts. This review is divided into various sub-sections, each of which comprehensively describes the preparation of a particular heterocyclic scaffold catalyzed by graphene-derived carbocatalyst in addition to synthesis of graphene oxide and reduced graphene oxide, functionalization, and structural features governing their catalytic properties. Synthesis of heterocycles catalyzed by graphene-based carbocatalysts.
Collapse
|
25
|
Antonietti M, Lopez-Salas N, Primo A. Adjusting the Structure and Electronic Properties of Carbons for Metal-Free Carbocatalysis of Organic Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805719. [PMID: 30561777 DOI: 10.1002/adma.201805719] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials doped with some other lightweight elements were recently described as powerful, heterogeneous, metal-free organocatalysts, adding to their high performance in electrocatalysis. Here, recent observations in traditional catalysis are reviewed, and the underlying reaction mechanisms of the catalyzed organic transformations are explored. In some cases, these are due to specific active functional sites, but more generally the catalytic activity relates to collective properties of the conjugated nanocarbon frameworks and the electron transfer from and to the catalytic centers and substrates. It is shown that the learnings are tightly related to those of electrocatalysis; i.e., the search for better electrocatalysts also improves chemocatalysis, and vice versa. Carbon-carbon heterojunction effects and some perspectives on future possibilities are discussed at the end.
Collapse
Affiliation(s)
- Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424, Potsdam, Germany
- University of Potsdam, D-14424, Potsdam, Germany
| | - Nieves Lopez-Salas
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, D-14424, Potsdam, Germany
- University of Potsdam, D-14424, Potsdam, Germany
| | - Ana Primo
- Structured Materials, Instituto de Tecnología Química CSIC-UPV, Av. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
26
|
Davoodi F, Dekamin MG, Alirezvani Z. A practical and highly efficient synthesis of densely functionalized nicotinonitrile derivatives catalyzed by zinc oxide-decorated superparamagnetic silica attached to graphene oxide nanocomposite. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Farahnaz Davoodi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| | - Zahra Alirezvani
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry; Iran University of Science and Technology; Tehran 16846-13114 Iran
| |
Collapse
|
27
|
Facile and efficient protocols for C–C and C–N bond formation reactions using a superparamagnetic palladium complex as reusable catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03754-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Yue X, Wu Z, Wang G, Liang Y, Sun Y, Song M, Zhan H, Bi S, Liu W. High acidity cellulose sulfuric acid from sulfur trioxide: a highly efficient catalyst for the one step synthesis of xanthene and dihydroquinazolinone derivatives. RSC Adv 2019; 9:28718-28723. [PMID: 35529635 PMCID: PMC9071201 DOI: 10.1039/c9ra05748j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
A cellulose sulfonate catalyst (HS-cellulose sulfonate) with high stability, excellent catalytic activity and high acidity value (about 1.55 mmol g−1) was successfully prepared by SO3 gas phase sulfonation. The basic morphology and nanostructure of the catalyst were determined by HRTEM, XRD, IR, TG, etc. In addition, the catalyst was applied to the catalytic reaction of a dihydroquinazolinone derivative and a xanthene compound, and very valuable results were obtained. The development and preparation of cellulose sulfonate catalysts provide a good approach for the development and application of cellulose, and also an important application of green organic catalytic synthesis methodology. The HS-cellulose sulfonate catalysed green and efficient one-step synthesis of xanthene and dihydroquinazolinone derivatives.![]()
Collapse
Affiliation(s)
- Xiaofei Yue
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Zhiqiang Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Gang Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Yanping Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Yanyan Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Manrong Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Haijuan Zhan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuxian Bi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Wanyi Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
29
|
Abstract
The bismuth-catalyzed oxidative condensation of aldehydes with 2-aminobenzamide under aerobic conditions is reported using ethanol as the solvent. Good to excellent isolated yields (68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions with excellent functional group tolerance. The quinazolinones were further functionalized to afford N-allylated quinazolinones, 2-aminopyridine derivatives, and annulated polyheterocyclic compounds via transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Sandeep R. Vemula
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Gregory R. Cook
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
30
|
Radfar I, Miraki MK, Ghandi L, Esfandiary N, Abbasi S, Karimi M, Heydari A. BF 3-grafted Fe 3O 4@Sucrose nanoparticles as a highly-efficient acid catalyst for syntheses of Dihydroquinazolinones (DHQZs) and Bis 3-Indolyl Methanes (BIMs). Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iman Radfar
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | | | - Leila Ghandi
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Naghmeh Esfandiary
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Sepideh Abbasi
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Meghdad Karimi
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| | - Akbar Heydari
- Chemistry Department; Tarbiat Modares University; PO Box 14155-4838 Tehran Iran
| |
Collapse
|
31
|
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Adv 2018; 8:20894-20921. [PMID: 35542353 PMCID: PMC9080947 DOI: 10.1039/c8ra02827c] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
2,3-Dihydroquinazolin-4-one (DHQ) belongs to the class of nitrogen-containing heterocyclic compounds representing a core structural component in various biologically active compounds. In the past decades, several methodologies have been developed for the synthesis of the DHQ framework, especially the 2-substituted derivatives. Unfortunately, multistep syntheses, harsh reaction conditions, and the use of toxic reagents and solvents have limited their full potential as a versatile fragment. Recently, use of green chemistry and alternative strategies are being explored to prepare diverse DHQ derivatives. This fragment is used as a synthon for the preparation of biologically active quinazolinones and as a functional substrate for the synthesis of modified DHQ derivatives exhibiting different biological properties. In this review, we provide a comprehensive assessment of the synthesis and biological evaluations of DHQ derivatives.
Collapse
Affiliation(s)
- Mariateresa Badolato
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Ed. Polifunzionale 87036 Arcavacata di Rende CS Italy
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex 1600 Huron Parkway Ann Arbor MI 48109 USA
| |
Collapse
|
32
|
Liu W, Wu G, Gao W, Ding J, Huang X, Liu M, Wu H. Palladium-catalyzed oxidative CC bond cleavage with molecular oxygen: one-pot synthesis of quinazolinones from 2-amino benzamides and alkenes. Org Chem Front 2018. [DOI: 10.1039/c8qo00670a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Palladium-catalyzed oxidative cleavage/cyclization has been disclosed for the concise synthesis of various quinazolinone derivatives from readily available 2-aminobenzamides and terminal alkenes with excellent functional group tolerance.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Science
- Wenzhou Medical University
- Wenzhou 325035
- People's Republic of China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Jinchang Ding
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- People's Republic of China
| |
Collapse
|
33
|
Saha M, Das AR. Access of Diverse 2-Pyrrolidinone, 3,4,5-Substituted Furanone and 2-Oxo-dihydropyrroles Applying Graphene Oxide Nanosheet: Unraveling of Solvent Selectivity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moumita Saha
- Department of Chemistry; University of Calcutta; Kolkata-700009, India
| | - Asish R. Das
- Department of Chemistry; University of Calcutta; Kolkata-700009, India
| |
Collapse
|
34
|
Devi J, Kalita SJ, Deka DC. Expeditious synthesis of 2,3-dihydroquinazolin-4(1H)-ones in aqueous medium using thiamine hydrochloride (VB1) as a mild, efficient, and reusable organocatalyst. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1337149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jutika Devi
- Department of Chemistry, University of Gauhati, Guwahati, Assam, India
| | | | | |
Collapse
|
35
|
Sedrpoushan A, Heidari M, Akhavan O. Nanoscale graphene oxide sheets as highly efficient carbocatalysts in green oxidation of benzylic alcohols and aromatic aldehydes. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62776-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 2017; 21:325-337. [DOI: 10.1007/s11030-017-9728-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
|
37
|
Majumdar B, Mandani S, Bhattacharya T, Sarma D, Sarma TK. Probing Carbocatalytic Activity of Carbon Nanodots for the Synthesis of Biologically Active Dihydro/Spiro/Glyco Quinazolinones and Aza-Michael Adducts. J Org Chem 2017; 82:2097-2106. [PMID: 28121145 DOI: 10.1021/acs.joc.6b02914] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the fluorescent carbon dots as an effective and recyclable carbocatalyst for the generation of carbon-heteroatom bond leading to quinazolinone derivatives and aza-Michael adducts under mild reaction conditions. The results establish this nanoscale form of carbon as an alternative carbocatalyst for important acid catalyzed organic transformations. The mild surface acidity of carbon dots imparted by -COOH functionality could effectively catalyze the formation of synthetically challenging spiro/glycoquinazolinones under the present reaction conditions.
Collapse
Affiliation(s)
- Biju Majumdar
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - Sonam Mandani
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - Tamalika Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - Daisy Sarma
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Simrol, Madhya Pradesh 453552, India
| | - Tridib K Sarma
- Discipline of Chemistry, Indian Institute of Technology Indore , Khandwa Road, Simrol, Madhya Pradesh 453552, India
| |
Collapse
|
38
|
Reddy SS, Reddy BN, Reddy PVG, Reddy GV, Sarma LS. Mild and Efficient Synthesis of 5-(2,2-difluoro-1-phenyl cyclopropyl)- N-substituted-1,3,4-oxadiazol-2-amines viaGraphene Oxide as Catalyst under Ultrasonic Irradiation Conditions. ChemistrySelect 2017. [DOI: 10.1002/slct.201601413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Bijivemula N. Reddy
- Department of Chemistry; Vellore Institute of Technology; Vellore Tamil Nadu India
| | | | - Gajulapalli Vishwakshan Reddy
- Nanoelectrochemistry Research Laboratory; Department of Chemistry; Yogi Vemana University; Kadapa- 516003, Andhra Pradesh India
| | - Loka Subramanyam Sarma
- Nanoelectrochemistry Research Laboratory; Department of Chemistry; Yogi Vemana University; Kadapa- 516003, Andhra Pradesh India
| |
Collapse
|
39
|
Shaabani A, Afshari R, Hooshmand SE. Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: a bio-nanoreactor with extremely high activity toward click-multi-component reactions. NEW J CHEM 2017. [DOI: 10.1039/c7nj01150d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, we have designed a procedure for the synthesis of a bio-nanoreactor catalyst, crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes (CS NPs/MWCNT@Fe3O4), via an in situ ionotropic gelation method.
Collapse
Affiliation(s)
- Ahmad Shaabani
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | - Ronak Afshari
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| | | |
Collapse
|
40
|
Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, García H. Active sites on graphene-based materials as metal-free catalysts. Chem Soc Rev 2017; 46:4501-4529. [DOI: 10.1039/c7cs00156h] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defects, periphery, heteroatoms and heterojunctions can make graphene behave as a catalyst without the need for metallic elements.
Collapse
Affiliation(s)
- Sergio Navalon
- Departamento de Química and Instituto de Tecnologia Química (CSIC-UPV)
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| | | | - Mercedes Alvaro
- Departamento de Química and Instituto de Tecnologia Química (CSIC-UPV)
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| | | | - Hermenegildo García
- Departamento de Química and Instituto de Tecnologia Química (CSIC-UPV)
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| |
Collapse
|
41
|
Sharma R, Vishwakarma RA, Bharate SB. Bimetallic Cu-Mn-Catalyzed Synthesis of 2-Arylquinazolin-4(3H)-ones: Aqueous Ammonia as Source of a Ring Nitrogen Atom. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rohit Sharma
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| | - Sandip B. Bharate
- Medicinal Chemistry Division; Academy of Scientific & Innovative Research (AcSIR); CSIR - Indian Institute of Integrative Medicine; Canal Road 180001 Jammu India
| |
Collapse
|
42
|
Glycerol assisted eco-friendly strategy for the facile synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ols) and 2-aryl-2,3-dihydroquinazolin-4(1H)-ones under catalyst-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2728-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Zhang X, Dong S, Niu X, Li Z, Fan X, Zhang G. Palladium-Catalyzed Ortho-Selective C–H Oxidative Carbonylation of N-Substituted Anilines with CO and Primary Amines for the Synthesis of o-Aminobenzamides. Org Lett 2016; 18:4634-7. [DOI: 10.1021/acs.orglett.6b02255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiaopeng Zhang
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shuxiang Dong
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xueli Niu
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Zhengwei Li
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xuesen Fan
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Guisheng Zhang
- Collaborative
Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
44
|
Saha M, Pradhan K, Das AR. Facile and eco-friendly synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Adv 2016. [DOI: 10.1039/c6ra06979g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nanocrystalline CuFe2O4 catalyzed one pot three component synthesis of chromeno[4,3-b]pyrrol-4(1H)-one derivatives has been achieved in aqueous media.
Collapse
Affiliation(s)
- Moumita Saha
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | - Koyel Pradhan
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| | - Asish R. Das
- Department of Chemistry
- University of Calcutta
- Kolkata-700009
- India
| |
Collapse
|
45
|
Hu Y, Chen L, Li B. Iron nitrate/TEMPO-catalyzed aerobic oxidative synthesis of quinazolinones from alcohols and 2-aminobenzamides with air as the oxidant. RSC Adv 2016. [DOI: 10.1039/c6ra12164k] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly efficient, one-pot Fe(NO3)3/TEMPO-catalyzed protocol for aerobic oxidative synthesis of quinazolinones from easily accessible primary alcohols and 2-aminobenzamides with molecular oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Yongke Hu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Lei Chen
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Bindong Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
46
|
Kausar N, Mukherjee P, Das AR. Practical carbocatalysis by graphene oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzo[1,4]diazepine scaffolds. RSC Adv 2016. [DOI: 10.1039/c6ra17520a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal free green protocol in aqueous medium. Use of GO nanosheets as exclusive heterogeneous catalyst. Almost intact catalytic activity upto the 5th run. Mild reaction conditions preserve sensitive structural moeities.
Collapse
Affiliation(s)
- Nazia Kausar
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | | | - Asish R. Das
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| |
Collapse
|