1
|
Yu W, Yang W, Zhao MY, Meng XL. Functional Metabolomics Analysis Elucidating the Metabolic Biomarker and Key Pathway Change Associated With the Chronic Glomerulonephritis and Revealing Action Mechanism of Rhein. Front Pharmacol 2020; 11:554783. [PMID: 33101021 PMCID: PMC7544993 DOI: 10.3389/fphar.2020.554783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic glomerulonephritis (CGN) as the culprit of kidney failure can increase the mortality of critically ill patients and seriously threatens people’s health all over the world. This study using metabolomics strategy is to reveal the potential therapeutic mechanism-related targets to evaluate the effects of rhein (RH) on CGN rats. Changes of serum metabolites and pathways were analyzed by non-targeted metabolomic method based on liquid chromatography-mass spectrometry (LC-MS) combined with ingenuity pathway analysis. In addition, the levels of biochemical indicators were also detected. A total of 25 potential biomarkers were identified to express serum metabolic turbulence in CGN animal model, and then 16 biomarkers were regulated by RH trending to the normal states. From metabolite enrichment and pathway analysis, pharmacological activity of RH on CGN were mainly involved in six vital metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, tricarboxylic acid cycle (TCA cycle), alanine, aspartate, and glutamate metabolism, arginine and proline metabolism. It suggested CGN treatment with RH, which may be mediated via interference with metabolic pathway such as amino acid metabolism, arachidonic acid metabolism, and TCA cycle to regulating inflammation, oxidation response and immune regulation against CGN. It showed that metabolomics method offer deeply insight into the therapeutic mechanisms of natural product.
Collapse
Affiliation(s)
- Wei Yu
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming-Yan Zhao
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiang-Lin Meng
- Department of Intensive Care Unit, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Zhao LK, Zhao YB, Yu PC, Zhang PX. Metabolomics approach based on utra-performance liquid chromatography coupled to mass spectrometry with chemometrics methods for high-throughput analysis of metabolite biomarkers to explore the abnormal metabolic pathways associated with myocardial dysfunction. Biomed Chromatogr 2020; 34:e4847. [PMID: 32285481 DOI: 10.1002/bmc.4847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Ultra-performance liquid chromatography/mass spectrometry-based metabolomics can been used for discovery of metabolite biomarkers to explore the metabolic pathway of diseases. Identification of metabolic pathways is key to understanding the pathogenesis and mechanism of disease. Myocardial dysfunction induced by sepsis (SMD) is a severe complication of septic shock and represents major causes of death in intensive care units; however its pathological mechanism is still not clear. In this study, ultrahigh-pressure liquid chromatography with mass spectrometry-based metabolomics with chemometrics anaylsis and multivariate pattern recognition analysis were used to detect urinary metabolic profile changes in a lipopolysaccharide-induced SMD mouse model. Multivariate statistical analysis including principal component analysis and orthogonapartial least squares discriminant analysis for the discrimination of SMD was conducted to identify potential biomarkers. A total of 19 differential metabolites were discovered by high-resolution mass spectrometry-based urinary metabolomics strategy. The altered biochemical pathways based on these metabolites showed that tyrosine metabolism, phenylalanine metabolism, ubiquinone biosynthesis and vitamin B6 metabolism were closely connected to the pathological processes of SMD. Consequently, integrated chemometric analyses of these metabolic pathways are necessary to extract information for the discovery of novel insights into the pathogenesis of disease.
Collapse
Affiliation(s)
- Ling-Kun Zhao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yun-Bo Zhao
- First Affiliated Hospital, Jiamusi University, Xiangyang District, Heilongjiang, China
| | - Peng-Cheng Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
3
|
Sun YC, Han SC, Yao MZ, Liu HB, Wang YM. Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS. RSC Adv 2020; 10:1552-1571. [PMID: 35494719 PMCID: PMC9047290 DOI: 10.1039/c9ra08090b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline–alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na+/K+-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA. We explore the metabolic biomarker and pathway changes accompanying the adaptive evolution of crucian subjected to carbonate alkalinity exposure, using UPLC-ESI-QTOF-MS, in order to understand the molecular physiological mechanisms of saline–alkali tolerance.![]()
Collapse
Affiliation(s)
- Yan-chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Shi-cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Ming-zhu Yao
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Hong-bai Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| | - Yu-mei Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products
- Ministry of Agriculture and Rural Areas
- Harbin 150070
- P. R. China
| |
Collapse
|
4
|
Yao H, Yu PC, Jiang CM. Metabolomics-driven identification of perturbations in amino acid and sphingolipid metabolism as therapeutic targets in a rat model of anorexia nervosa disease using chemometric analysis and a multivariate analysis platform. RSC Adv 2020; 10:4928-4941. [PMID: 35498285 PMCID: PMC9049018 DOI: 10.1039/c9ra05187b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/03/2022] Open
Abstract
It is important to explore novel therapeutic targets and develop an effective strategy for the treatment of anorexia nervosa. In this work, serum samples were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of flight mass spectrometry (UPLC/Q-TOF MS) coupled with chemometric analysis and multivariate analysis to obtain the metabolites and their corresponding pathways. In addition, knock-in and knock-down of the key enzyme in vivo was performed to verify the reliability of the obtained metabolic pathway, which is closely associated with the anorexia nervosa pathomechanism and the potential targets. There were significant differences in the biochemical parameters between the model group and the control group. A total of 26 potential biomarkers were identified to resolve the difference between the control and model rats, which were closely related to amino acid metabolism, sphingolipid metabolism, arachidonic acid metabolism, the citrate cycle, and so forth. According to the ingenuity pathway analysis, we further elucidated the relationship between the gene, protein, and metabolite alteration in anorexia nervosa, which are involved in cellular compromise, lipid metabolism, small molecule biochemistry, cell signaling, molecular transport, nucleic acid metabolism, cell morphology, cellular function and maintenance. Arginosuccinate synthetase (ASS) deficiency was accompanied by a significant downregulation of the β-endorphin and ghrelin in the animal models. The metabolites and pathways obtained using the metabolomics strategy may provide valuable information for the early treatment for anorexia nervosa. It is important to explore novel therapeutic targets and develop an effective strategy for the treatment of anorexia nervosa.![]()
Collapse
Affiliation(s)
- Hong Yao
- Neonatology Department
- First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Peng-Cheng Yu
- College of Traditional Chinese Medicine
- Jilin Agricultural University
- Changchun 130118
- China
| | - Chun-Ming Jiang
- Neonatology Department
- First Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| |
Collapse
|
5
|
Liang Q, Liu H, Li XL, Yang Y, Hairong P. Rapid lipidomics analysis for sepsis-induced liver injury in rats and insights into lipid metabolic pathways using ultra-performance liquid chromatography/mass spectrometry. RSC Adv 2019; 9:35364-35371. [PMID: 35528052 PMCID: PMC9074727 DOI: 10.1039/c9ra05836b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022] Open
Abstract
Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine. Sepsis is a major systemic inflammatory syndrome and the liver here is a potential target organ for dysfunctional response. However, the study of alterations in global lipid profiles associated with sepsis-induced liver injury is still limited. In this work, we set out to determine alterations of lipidomics profiles in a rat model of sepsis-induced liver injury using an untargeted lipidomics strategy. Liquid chromatography coupled with mass spectrometry in conjunction with multivariate data analysis and pathway analysis were used to acquire a global lipid metabolite profile. Meanwhile, biochemistry index and histopathological examinations of the liver were performed to obtain auxiliary measurements for determining the pathological changes associated with sepsis-induced liver injury. Eleven lipid metabolites and two metabolic pathways were discovered and associated with sepsis-induced liver injury. The results indicated that various biomarkers and pathways may provide evidence for and insight into lipid profile alterations associated with sepsis-induced liver injury, and hence pointed to potential strategic targets for clinical diagnosis and therapy in the future. Lipidomics has been applied in the identification and quantification of molecular lipids within an organism, and to provide insights into mechanisms in clinical medicine.![]()
Collapse
Affiliation(s)
- Qun Liang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Han Liu
- Simon Fraser University (SFU) Burnaby British Columbia Canada
| | - Xiu-Li Li
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Yang Yang
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| | - Panguo Hairong
- ICU Center, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Heping Road 24, Xiangfang District Harbin 150040 China +86-13069717715 +86-13069717715
| |
Collapse
|
6
|
Gao L, Xue Y, Zhang Z, Tian Y. Enantioseparation of
N‐
acetyl‐glutamine enantiomers by LC–MS/MS and its application to a plasma protein binding study. Biomed Chromatogr 2019; 33:e4559. [DOI: 10.1002/bmc.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yunwen Xue
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| |
Collapse
|
7
|
Liang Q, Liu H, Li XL, Sun PY, Yang Y, Du C. Retracted Article: A high-throughput metabolomics strategy for discovering the influence of differential metabolites and metabolic pathways of huaxian capsules on sepsis-associated Qi deficiency and blood stasis syndrome. RSC Adv 2019; 9:30868-30878. [PMID: 35529408 PMCID: PMC9072202 DOI: 10.1039/c9ra06679a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
High-throughput metabolomics can be used to investigate the therapeutic targets and metabolic mechanisms of traditional Chinese medicine formulae.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Xiu-li Li
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Pei-yang Sun
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yang Yang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Chunpeng Du
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
8
|
Liang Q, Liu H, Li X, Hairong P, Sun P, Yang Y, Du C. High-throughput metabolic profiling, combined with chemometrics and bioinformatic analysis reveals functional alterations in myocardial dysfunction. RSC Adv 2019; 9:3351-3358. [PMID: 35548688 PMCID: PMC9087870 DOI: 10.1039/c8ra07572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
High-throughput metabolic profiling technology has been used for biomarker discovery and to reveal underlying metabolic mechanisms.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Xiuli Li
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Panguo Hairong
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Peiyang Sun
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yang Yang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Chunpeng Du
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
9
|
Li Q, Qiu Y, Han W, Zheng Y, Wang X, Xiao D, Mao M, Li Q. Determination of uric acid in biological samples by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry and study on pathogenesis of pulmonary arterial hypertension in pulmonary artery endothelium cells. RSC Adv 2018; 8:25808-25814. [PMID: 35539759 PMCID: PMC9082525 DOI: 10.1039/c7ra12702b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/04/2018] [Indexed: 11/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease that can lead to vascular remodelling and hypertension. Clinical diagnosis of PAH is very difficult. Uric acid (UA) can act as a biological marker for screening of PAH in patients. Multiple studies have indicated that reactive oxygen species (ROS) play an important role in the development of PAH. Thus, it is important to study the relationship between UA and ROS based on the pathogenesis of PAH. For monitoring PAH, a high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method was developed to measure the concentration of UA from rat models and pulmonary arterial endothelial cells (PAECs) models, which were induced by monocrotaline (MCT) and hypoxia, respectively. In addition, the treatment groups were treated by N-acetyl-l-cysteine (NAC), a ROS scavenger. With the confirmation from hematoxylin-eosin (H&E) staining, the HPLC-ESI-MS/MS method was adopted to successfully analyze the concentration of UA. In this study, for the first time, thymine was used as an internal standard (I.S.) of uric acid. The results showed that the UA concentration in the PAH groups was higher than that in the normal groups, while the UA concentration in the treatment groups decreased compared to that in the PAH group (p < 0.05). It was experimentally proven that the HPLC-ESI-MS/MS method is a rapid, efficient and reliable quantitative method to detect PAH. Furthermore, our results indicated that UA and ROS have a double-regulator role.
Collapse
Affiliation(s)
- Qiaozhi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
| | - Yanli Qiu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
- Heilongjiang Far East Cardiovascular Hospital Harbin 150036 P. R. China
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China
| | - Yaqin Zheng
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
| | - Dandan Xiao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
| | - Min Mao
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University (Daqing) Daqing 163319 P. R. China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University Harbin 150086 P. R. China +86-0451-86699347
- Biological Sciences, Purdue University West Lafayette Indiana USA
| |
Collapse
|
10
|
Li HH, Pan JL, Hui S, Ma XW, Wang ZL, Yao HX, Wang JF, Li H. Retracted Article: High-throughput metabolomics identifies serum metabolic signatures in acute kidney injury using LC-MS combined with pattern recognition approach. RSC Adv 2018; 8:14838-14847. [PMID: 35541357 PMCID: PMC9079920 DOI: 10.1039/c8ra01749b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/23/2018] [Indexed: 02/03/2023] Open
Abstract
Metabolomics, as a promising and powerful approach, refers to comprehensive assessment and identification of small molecule endogenous metabolites in a biological system which is capable of further understanding the mechanisms of diseases for early diagnosis, effective treatment and prognosis. Acute kidney injury (AKI) induced by contrast is a serious complication in patients undergoing administration of iodinated contrast media. It is becoming a major health concern in clinic, however, the molecular mechanisms of contrast-induced acute kidney injury (CI-AKI) have not been well characterized. In this study, we used serum metabolomics based on liquid chromatography-mass spectrometry (LC-MS) combined with pattern recognition to explore and characterize potential metabolites and metabolic pathway in an experimental model for CI-AKI. Seventeen differentiating metabolites in the serum were identified involving the pivotal metabolic pathways related to tryptophan metabolism, glycerophospholipid metabolism, steroid hormone biosynthesis, pyrimidine metabolism, sphingolipid metabolism, aminoacyl-tRNA biosynthesis. Our study provides novel insight into pathophysiologic mechanisms of AKI by changing biomarkers and pathways.
Collapse
Affiliation(s)
- Hai-Hong Li
- Department of Critical-Care Medicine, Mudanjiang Medical University Affiliated HongQi Hospital Mudanjiang 157000 China
| | - Jian-Liang Pan
- Department of Critical-Care Medicine, The Second People's Hospital of Weifang Weifang 261041 China
| | - Su Hui
- Department of Operating Theatre, The Second Affiliated Hospital of Mudanjiang Medical University Mudanjiang 157000 China
| | - Xiao-Wei Ma
- Department of Critical-Care Medicine, Mudanjiang Medical University Affiliated HongQi Hospital Mudanjiang 157000 China
| | - Zhi-Long Wang
- Department of Postgraduate Culture Department, The First Clinical Medicine School of Mudanjiang Medical University Mudanjiang 157000 China
| | - Hui-Xin Yao
- Department of Medical Department, Mudanjiang Medical University Affiliated HongQi Hospital Mudanjiang 157000 China
| | - Jun-Feng Wang
- Department of Medical Department, Mudanjiang Medical University Affiliated HongQi Hospital Mudanjiang 157000 China
| | - Hong Li
- Clinical Skills Center of the First Clinical College, Mudanjiang Medical University Mudanjiang 157000 China +86-0453-6602104 +86-1594-5325338
| |
Collapse
|
11
|
Rong W, Ding K, Guo S, Yuan Z, Li Q, Bi K. A time-of-flight mass spectrometry based strategy to fast screen triterpenoids in Xanthoceras sorbifolia Bunge husks for bioactive substances against Alzheimer's disease. RSC Adv 2018; 8:14732-14739. [PMID: 35541365 PMCID: PMC9079961 DOI: 10.1039/c8ra01765d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
Xanthoceras sorbifolia Bunge is a folk medicine in China. Recently, the triterpenoids in its husks have attracted more and more attention for potential prevention against Alzheimer's disease. However, current studies on its bioactive substances were still insufficient. To reveal more bioactive substances, an efficient and practical strategy based on high resolution mass spectra coupled with multiple data mining techniques was developed to characterize the barrigenol type triterpenoids in the husks and dosed rat plasma. A total of 50 barrigenol type triterpenoids were identified in the husks, and 6 of these were detected in the rat plasma, which were regarded as bioactive candidates. To find the real bioactive substances, the neuroprotective effect of the candidates was further tested by calculating the PC12 cell viability against amyloid-β-induced cytotoxicity. As a result, three out of the six candidates exhibited obvious neuroprotction against amyloid-β-induced cytotoxicity on PC12 cells, indicating their potential to be bioactive substances against Alzheimer's disease. This study will be a valuable reference of the bioactive substances in Xanthoceras sorbifolia Bunge husks against Alzheimer's disease and the provided strategy can also be applied to the exploration of the effective constituents in other medicines. An efficient strategy was developed to reveal the neuroprotective substances in X. sorbifolia husks.![]()
Collapse
Affiliation(s)
- Weiwei Rong
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kewen Ding
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Sirui Guo
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ziyue Yuan
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
12
|
Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study. ACS Chem Neurosci 2017; 8:1251-1261. [PMID: 28206740 DOI: 10.1021/acschemneuro.6b00398] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The l-enantiomer is the predominant type of amino acid in all living systems. However, d-amino acids, once thought to be "unnatural", have been found to be indigenous even in mammalian systems and increasingly appear to be functioning in essential biological and neurological roles. Both d- and l-amino acid levels in the hippocampus, cortex, and blood samples from NIH Swiss mice are reported. Perfused brain tissues were analyzed for the first time, thereby eliminating artifacts due to endogenous blood, and decreased the mouse-to-mouse variability in amino acid levels. Total amino acid levels (l- plus d-enantiomers) in brain tissue are up to 10 times higher than in blood. However, all measured d-amino acid levels in brain tissue are typically ∼10 to 2000 times higher than blood levels. There was a 13% reduction in almost all measured d-amino acid levels in the cortex compared to those in the hippocampus. There is an approximate inverse relationship between the prevalence of an amino acid and the percentage of its d-enantiomeric form. Interestingly, glutamic acid, unlike all other amino acids, had no quantifiable level of its d-antipode. The bioneurological reason for the unique and conspicuous absence/removal of this d-amino acid is yet unknown. However, results suggest that d-glutamate metabolism is likely a unidirectional process and not a cycle, as per the l-glutamate/glutamine cycle. The results suggest that there might be unreported d-amino acid racemases in mammalian brains. The regulation and function of specific other d-amino acids are discussed.
Collapse
Affiliation(s)
- Choyce A. Weatherly
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Curran Parpia
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Polan T. Santos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Adam L. Hartman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Blomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
13
|
Zhang Y, Liu P, Li Y, Zhang AH. Exploration of metabolite signatures using high-throughput mass spectrometry coupled with multivariate data analysis. RSC Adv 2017. [DOI: 10.1039/c6ra27461g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Disease impacts important metabolic pathways and the alteration of metabolites may serve as a potential biomarker for early-stage diagnosis.
Collapse
Affiliation(s)
- Yanli Zhang
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Peng Liu
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Yuanfeng Li
- First Affiliated Hospital
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| | - Ai-Hua Zhang
- Experiment Center
- College of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- China
| |
Collapse
|