1
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Che ZY, Wang XY, Ma X, Ding SN. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry. Mikrochim Acta 2019; 186:684. [DOI: 10.1007/s00604-019-3793-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023]
|
4
|
Wang D, Liang Y, Su Y, Shang Q, Zhang C. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens Bioelectron 2019; 130:55-64. [PMID: 30731346 DOI: 10.1016/j.bios.2019.01.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022]
Abstract
In this work, a novel facile closed bipolar electrochemiluminescence (C-BP-ECL) sensor has been developed for highly sensitive detection of glucose based on the integration of chitosan (CS), poly(diallyldimethylammonium chloride)-functioned multi-walled carbon nanotubes (PDDA-MWCNTs) and graphene quantum dots-gold nanoparticles (GQDs-AuNPs) on the wax/carbon ink-screen-printed cloth-based device. When CS, PDDA-MWCNTs and GQDs-AuNPs are successively decorated onto the cathode of closed bipolar electrode (C-BPE), the C-BPE anode can emit much stronger C-BP-ECL signals. Moreover, the cathodic decoration of the C-BPE can generate a stronger ECL signal in comparison with its anodic decoration. Under optimized conditions, glucose can be detected in the range of 0.1-5000 μM, and the limit of detection is estimated to be 64 nM, which is about three orders of magnitude lower than that in case of the bare C-BPE cathode (31 μM). It has been shown that the proposed sensor has high detection sensitivity, wide dynamic range, and as well acceptable reproducibility, selectivity and stability. Finally, the applicability and validity of the C-BP-ECL sensor are demonstrated for the detection of glucose in human serum samples. We believe that this novel highly-sensitive sensor will have potential applications in various areas such as clinical diagnosis, food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Dan Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yi Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yan Su
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qiuping Shang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Yeon SY, Yun J, Yoon SH, Lee D, Jang W, Han SH, Kang CM, Chung TD. A miniaturized solid salt reverse electrodialysis battery: a durable and fully ionic power source. Chem Sci 2018; 9:8071-8076. [PMID: 30542555 PMCID: PMC6238720 DOI: 10.1039/c8sc02954g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023] Open
Abstract
A novel pump-free miniaturized reverse electrodialysis (RED) system was designed to provide lasting power transduced from salinity gradients, named solid salt RED (ssRED), and this quasi-battery uses a solid salt instead of electrolyte solution for streamlined usage. It is portable, flexible, comparable in size to a universal serial bus flash drive, and easily activated with a small amount of water. It maintains a constant ionic concentration gradient through precipitation reactions between a pair of different salts. This precipitation-assisted solid salt RED (PssRED) is an unprecedented ionic power source as it can generate steady electricity in the absence of a driving pump. The PssRED was successfully coupled with bipolar electrode (BPE) microchip sensors which require stable ionic electricity and a polyelectrolyte ionic diode to realize a fully ionic circuit. It is envisioned that the range of application could be expanded to supply electromotive force to various devices through an ionic charge flow.
Collapse
Affiliation(s)
- Song Yi Yeon
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Jeongse Yun
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Sun-Heui Yoon
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Dahye Lee
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Woohyuk Jang
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Seok Hee Han
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
| | - Chung Mu Kang
- Advanced Institute of Convergence Technology , Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry , Seoul National University , Seoul , 08826 , Republic of Korea .
- Advanced Institute of Convergence Technology , Suwon-si , Gyeonggi-do 16229 , Republic of Korea
| |
Collapse
|
6
|
Bipolar electrochemiluminescence on thread: A new class of electroanalytical sensors. Biosens Bioelectron 2017; 94:335-343. [DOI: 10.1016/j.bios.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/12/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
|
7
|
Graphite paper-based bipolar electrode electrochemiluminescence sensing platform. Biosens Bioelectron 2017; 94:47-55. [DOI: 10.1016/j.bios.2017.02.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
|
8
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sens 2017; 2:320-326. [PMID: 28723210 DOI: 10.1021/acssensors.7b00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Huanhuan Xing
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|