1
|
Mosleh N, Mohammadikish M, Masteri-Farahani M. Designing a New Efficient Photocatalyst Based on Functionalization of Zn-Infinite Coordination Polymer with Ru(acac) 3 Complex for Dye Degradation in Aqueous Solutions: Charge Separation Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14224-14233. [PMID: 33203212 DOI: 10.1021/acs.langmuir.0c02331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new Zn-containing infinite coordination polymer, Zn-ICP, functionalized with Ru(acac)3 complex was designed and utilized as an efficient visible light photocatalyst for dye degradation in aqueous solutions. Incorporation of Ru(acac)3 not only extended the light absorption of the Zn-ICP to the visible region but also led to electron-hole separation. Upon visible light illumination, photoinduced electron transfer from excited state of Zn-ICP to Ru(acac)3 occurred, resulting in electron-hole separation as indicated by photoluminescence and electrochemical impedance spectroscopy. The obtained Ru-Zn-ICP revealed enhanced visible light photocatalytic activity in degradation of organic pollutants compared to pristine Zn-ICP owing to photoinduced electron transfer in the Ru-Zn-ICP system and efficient separation of photogenerated electron-hole pairs. The prepared Ru-Zn-ICP photocatalyst was readily recycled without major loss of activity in the successive cycles.
Collapse
Affiliation(s)
- Nazanin Mosleh
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Maryam Mohammadikish
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Majid Masteri-Farahani
- Faculty of Chemistry, Kharazmi University, Tehran 15719-14911Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
2
|
Lisowski P, Colmenares JC, Mašek O, Lisowski W, Lisovytskiy D, Grzonka J, Kurzydłowski K. Design and Fabrication of TiO2/Lignocellulosic Carbon Materials: Relevance of Low-temperature Sonocrystallization to Photocatalysts Performance. ChemCatChem 2018. [DOI: 10.1002/cctc.201800604] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pawel Lisowski
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences; University of Edinburgh; Edinburgh United Kingdom
| | - Wojciech Lisowski
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dmytro Lisovytskiy
- Institute of Physical Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Justyna Grzonka
- Faculty of Materials Science and Engineering; Warsaw University of Technology; Woloska 141 02-507 Warsaw Poland
- Institute of Electronic Materials Technology; Wolczynska 133 01-919 Warsaw Poland
| | - Krzysztof Kurzydłowski
- Faculty of Materials Science and Engineering; Warsaw University of Technology; Woloska 141 02-507 Warsaw Poland
| |
Collapse
|
3
|
Qiu P, Park B, Choi J, Thokchom B, Pandit AB, Khim J. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. ULTRASONICS SONOCHEMISTRY 2018; 45:29-49. [PMID: 29705323 DOI: 10.1016/j.ultsonch.2018.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/03/2018] [Accepted: 03/03/2018] [Indexed: 05/25/2023]
Abstract
Heterogeneous sonocatalysis, as an emerging advanced oxidation process (AOP), has shown immense potential in water treatment and been widely demonstrated to remove persistent organic compounds in the past decade. The present article aims to provide a comprehensive review on the development of a heterogeneous catalyst for enhancing the ultrasonic degradation rate of organic pollutants from a viewpoint of sonocatalytic mechanism. The rational design and fundamentals for preparing sonocatalysts are presented in the context of facilitating the heterogeneous nucleation and photo-thermal-catalytic effects as well as considering the mechanical stability and separation capacity of the heterogeneous catalyst. In addition, some new trends, ongoing challenges and possible methods to overcome these challenges are also highlighted and proposed.
Collapse
Affiliation(s)
- Pengpeng Qiu
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Beomguk Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Jongbok Choi
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Binota Thokchom
- Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aniruddha B Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 40019, India
| | - Jeehyeong Khim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
4
|
Choi J, Cui M, Lee Y, Kim J, Yoon Y, Jang M, Khim J. Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO 2 catalysts. ULTRASONICS SONOCHEMISTRY 2018; 43:193-200. [PMID: 29555275 DOI: 10.1016/j.ultsonch.2018.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO2-incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10 wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO2-NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO2-GR composites was also investigated. Overall, the performance of TiO2-GRs prepared by the hydrothermal method was better than that of calcined TiO2-CNTs. Among TiO2-GRs, 5% GR incorporated media (TiO2-GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500 kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability.
Collapse
Affiliation(s)
- Jongbok Choi
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yonghyeon Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeonggwan Kim
- Korea Environmental Industry and Technology, Seoul 03367, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-Dong Nowon-Gu, Seoul, Republic of Korea.
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Khataee A, Mohamadi FT, Rad TS, Vahid B. Heterogeneous sonocatalytic degradation of anazolene sodium by synthesized dysprosium doped CdSe nanostructures. ULTRASONICS SONOCHEMISTRY 2018; 40:361-372. [PMID: 28946435 DOI: 10.1016/j.ultsonch.2017.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Undoped and Dy-doped CdSe nanoparticles are synthesized and then characterized by the SEM, XRD, FT-IR, XPS and BET methods, which verify successful preparation of the doped catalyst. The sonocatalytic degradation of anazolene sodium as a model azo dye is higher than sonolysis process and the 2% Dy-doped CdSe with band gap of 1.42eV exhibits the greatest sonocatalytic performance. The decolorization efficiency (DE%) of sonocatalysis with 2% Dy-doped CdSe, undoped CdSe and sonolysis after 90min of the process is 91.32%, 56.13% and 39.14%, respectively. In addition, the sonocatalytic degradation of anazolene sodium increases with enhancement of the dopant, catalyst dosage, ultrasonic power, dissolved gasses and decreasing of initial anazolene sodium concentration. Furthermore, with addition of chloroform, sulfate, chloride and ethanol as the radical scavengers, the DE% decreases indicating the controlling mechanism of free radicals for the dye degradation. Besides, the results reveal the appropriate reusability of the catalyst and various degradation by-products are identified using the GC-MS technique. Eventually, the empirical kinetic model is expanded by nonlinear regression analysis for prediction of pseudo first-order constants in various operational conditions.
Collapse
Affiliation(s)
- Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Farzaneh Toutounchi Mohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Tannaz Sadeghi Rad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, 51579-44533 Tabriz, Iran
| |
Collapse
|