1
|
Nagayach A, Bhaskar R, Ghosh S, Singh KK, Han SS, Sinha JK. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res Rev 2024; 100:102450. [PMID: 39134179 DOI: 10.1016/j.arr.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301 India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| | | |
Collapse
|
2
|
Kuerbanjiang K, Rouzi K, Zhang SY. Nitrophenyl Thiourea-Modified Polyethylenimine Colorimetric Sensor for Sulfate, Fluorine, and Acetate. SENSORS (BASEL, SWITZERLAND) 2024; 24:3751. [PMID: 38931538 PMCID: PMC11207599 DOI: 10.3390/s24123751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
A thiourea-based colorimetric sensor incorporating polyethyleneimine (PEI) and chromophoric nitrophenyl groups was synthesized and utilized for detecting various anions. Structural characterization of the sensor was accomplished using FTIR and 1H-NMR spectroscopy. The sensor's interactions and colorimetric recognition capabilities with different anions, including CI-, Br-, I-, F-, NO3-, PF6-, AcO-, H2PO4-, PO43-, and SO42-, were investigated via visual observation and UV/vis spectroscopy. Upon adding SO42-, F-, and AcO- anions, the sensor exhibited distinct color changes from colorless to yellow and yellowish, while other anions did not induce significant color alterations. UV/vis spectroscopic titration experiments conducted in a DMSO/H2O solution (9:1 volume ratio) demonstrated the sensor's selectivity toward SO42-, F-, and AcO-. The data revealed that the formation of the main compounds and anion complexes was mediated by hydrogen bonding, leading to signal changes in the nitrophenyl thiourea-modified PEI spectrum.
Collapse
Affiliation(s)
- Kediye Kuerbanjiang
- College of Chemistry, Xinjiang University, Urumqi 830017, China;
- Chemical Engineering Department, McGill University, Montreal, QC H3A 0C5, Canada
| | - Kuerbanjiang Rouzi
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China;
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, Urumqi 830017, China
| | - Si-Yu Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
3
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
4
|
Nath P, Hamadna SS, Karamchand L, Foster J, Kopelman R, Amar JG, Ray A. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 2021; 146:3933-3941. [PMID: 33982697 PMCID: PMC8210662 DOI: 10.1039/d1an00456e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | | | | | - John Foster
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jacques G Amar
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
5
|
Ghiorghita CA, Ghimici L, Ailiesei GL. Synthesis of Thiourea-Graft-Polyethyleneimine and Its Performance in Flocculation of Some Inorganic Particles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Luminita Ghimici
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| |
Collapse
|
6
|
Pham DT, Saelim N, Cornu R, Béduneau A, Tiyaboonchai W. Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization. Pharmaceuticals (Basel) 2020; 13:E86. [PMID: 32366020 PMCID: PMC7281390 DOI: 10.3390/ph13050086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 12/03/2022] Open
Abstract
Recently, crosslinked fibroin nanoparticles (FNP) using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or the polymer poly(ethylenimine) (PEI) have been developed and showed potentials as novel drug delivery systems. Thus, this study further investigated the biological properties of these crosslinked FNP by labeling them with fluorescein isothiocyanate (FITC) for in vitro studies. All formulations possessed a mean particle size of approximately 300 nm and a tunable zeta potential (-20 to + 30 mV) dependent on the amount/type of crosslinkers. The FITC-bound FNP showed no significant difference in physical properties compared to the blank FNP. They possessed a binding efficacy of 3.3% w/w, and no FITC was released in sink condition up to 8 h. All formulations were colloidal stable in the sheep whole blood. The degradation rate of these FNP in blood could be controlled depending on their crosslink degree. Moreover, no potential toxicity in erythrocytes, Caco-2, HepG2, and 9L cells was noted for all formulations at particle concentrations of < 1 mg/mL. Finally, all FNP were internalized into the Caco-2 cells after 3 h incubation. The uptake rate of the positively charged particles was significantly higher than the negatively charged ones. In summary, the crosslinked FNP were safe and showed high potentials as versatile systems for biomedical applications.
Collapse
Affiliation(s)
- Duy Toan Pham
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand; (D.T.P.); (N.S.)
| | - Nuttawut Saelim
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand; (D.T.P.); (N.S.)
| | - Raphaël Cornu
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (R.C.); (A.B.)
| | - Arnaud Béduneau
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (R.C.); (A.B.)
| | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand; (D.T.P.); (N.S.)
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
7
|
Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018; 4:E62. [PMID: 30674838 PMCID: PMC6209281 DOI: 10.3390/gels4030062] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is commonly associated with limited effectiveness and unwanted side effects in normal cells and tissues, due to the lack of specificity of therapeutic agents to cancer cells when systemically administered. In brain tumors, the existence of both physiological barriers that protect tumor cells and complex resistance mechanisms to anticancer drugs are additional obstacles that hamper a successful course of chemotherapy, thus resulting in high treatment failure rates. Several potential surrogate therapies have been developed so far. In this context, hydrogel-based systems incorporating nanostructured drug delivery systems (DDS) and hydrogel nanoparticles, also denoted nanogels, have arisen as a more effective and safer strategy than conventional chemotherapeutic regimens. The former, as a local delivery approach, have the ability to confine the release of anticancer drugs near tumor cells over a long period of time, without compromising healthy cells and tissues. Yet, the latter may be systemically administered and provide both loading and targeting properties in their own framework, thus identifying and efficiently killing tumor cells. Overall, this review focuses on the application of hydrogel matrices containing nanostructured DDS and hydrogel nanoparticles as potential and promising strategies for the treatment and diagnosis of glioblastoma and other types of brain cancer. Some aspects pertaining to computational studies are finally addressed.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Sandra Nunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
8
|
Shirakura T, Smith C, Hopkins TJJ, Koo Lee YE, Lazaridis F, Argyrakis P, Kopelman R. Matrix Density Engineering of Hydrogel Nanoparticles with Simulation-Guided Synthesis for Tuning Drug Release and Cellular Uptake. ACS OMEGA 2017; 2:3380-3389. [PMID: 28782048 PMCID: PMC5537717 DOI: 10.1021/acsomega.7b00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
The use of a nanoparticle (NP)-based antitumor drug carrier has been an emerging strategy for selectively delivering the drugs to the tumor area and, thus, reducing the side effects that are associated with a high systemic dose of antitumor drugs. Precise control of drug loading and release is critical so as to maximize the therapeutic index of the NPs. Here, we propose a simple method of synthesizing NPs with tunable drug release while maintaining their loading ability, by varying the polymer matrix density of amine- or carboxyl-functionalized hydrogel NPs. We find that the NPs with a loose matrix released more cisplatin, with up to a 33 times faster rate. Also, carboxyl-functionalized NPs loaded more cisplatin and released it at a faster rate than amine-functionalized NPs. We performed detailed Monte Carlo computer simulations that elucidate the relation between the matrix density and drug release kinetics. We found good agreement between the simulation model and the experimental results for drug release as a function of time. Also, we compared the cellular uptake between amine-functionalized NPs and carboxyl-functionalized NPs, as a higher cellular uptake of NPs leads to improved cisplatin delivery. The amine-functionalized NPs can deliver 3.5 times more cisplatin into cells than the carboxyl-functionalized NPs. The cytotoxic efficacy of both the amine-functionalized NPs and the carboxyl-functionalized NPs showed a strong correlation with the cisplatin release profile, and the latter showed a strong correlation with the NP matrix density.
Collapse
Affiliation(s)
- Teppei Shirakura
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Christof Smith
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Thomas John James Hopkins
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yong-Eun Koo Lee
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Filippos Lazaridis
- Department
of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panos Argyrakis
- Department
of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Raoul Kopelman
- Department of Chemistry, The University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|