1
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
2
|
Jing Z, Jie L, Sunxiang Q, Haifeng N, Jie F. Injectable zwitterionic cryogels for accurate and sustained chemoimmunotherapy. J Mater Chem B 2023; 11:2733-2744. [PMID: 36880267 DOI: 10.1039/d3tb00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Chemoimmunotherapy is an effective method to treat cancer, and thus various vehicles have been constructed to co-deliver immune agents and anticancer drugs. But the immune induction process in vivo is highly susceptible to the influence of the material itself. To avoid immune reactions by the materials of delivery systems, herein, a new kind of zwitterionic cryogels (SH cryogels) with extremely low immunogenicity was prepared for chemoimmunotherapy of cancer. Their macroporous structure enabled the SH cryogels to have good compressibility and be injected through a conventional syringe. The loaded chemotherapeutic drugs and immune adjuvants were accurately, locally and long-termly released in the vicinity of tumors, enhancing the outcome of tumor therapy and minimizing the damage caused by the chemotherapeutic drugs to other organ tissues. In vivo tumor treatment experiments indicated that chemoimmunotherapy using the SH cryogel platform could inhibit the growth of breast cancer tumors to the greatest extent. Furthermore, macropores of SH cryogels supported cells to move freely in the cryogels, which could promote the dendritic cells to capture the in situ produced tumor antigens and present them to T cells. The ability to act as cradles for cell infiltration made the SH cryogels promising for applications as vaccine platforms.
Collapse
Affiliation(s)
- Zhang Jing
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Lu Jie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Qian Sunxiang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Ni Haifeng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Feng Jie
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| |
Collapse
|
3
|
Stager MA, Adhikari B, Raichart A, Krebs MD. Self-Initiated Photopolymerization of Anti-Inflammatory Zwitterionic Hydrogels with Sustained Release. ACS Macro Lett 2023; 12:65-70. [PMID: 36574625 DOI: 10.1021/acsmacrolett.2c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers that have garnered significant attention as wound-healing materials. Many synthetic hydrogels are fabricated using a radical polymerization approach that requires an initiator molecule that is often photo- or thermosensitive. Initiator-free hydrogels are an emerging area of research that focuses on hydrogel fabrication that occurs in the absence of an initiator or cross-linker molecule, making these hydrogels highly relevant in tissue engineering and regenerative medicine due to their excellent cytocompatibility and ease of scale-up. Here we present on the development of initiator-free zwitterionic hydrogels that photopolymerize without any initiator or cross-linker while under cytocompatible conditions. The hydrogels exhibit a wide range of mechanical characteristics that are dependent on their polymer composition. They resist nonspecific protein adsorption and exhibit a sustained release of proteins and small molecules. Additionally, these self-initiated hydrogels significantly mitigate inflammatory macrophage activation in vitro. Overall, the development of self-initiated photopolymerized zwitterionic hydrogels offers significant progress in the fields of biomaterials and materials science.
Collapse
Affiliation(s)
- Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexandra Raichart
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Melissa D Krebs
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.,Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Influence of the Nature and Structure of Polyelectrolyte Cryogels on the Polymerization of (3,4-Ethylenedioxythiophene) and Spectroscopic Characterization of the Composites. Molecules 2022; 27:molecules27217576. [DOI: 10.3390/molecules27217576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Conductive hydrogels are polymeric materials that are promising for bioelectronic applications. In the present study, a complex based on sulfonic cryogels and poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated as an example of a conductive hydrogel. Preparation of polyacrylate cryogels of various morphologies was carried out by cryotropic gelation of 3-sulfopropyl methacrylate and sulfobetaine methacrylate in the presence of functional comonomers (2-hydroxyethyl methacrylate and vinyl acetate). Polymerization of 3,4-ethylenedioxythiophene in the presence of several of the above cryogels occurred throughout the entire volume of each polyelectrolyte cryogel because of its porous structure. Structural features of cryogel@PEDOT complexes in relation to their electrochemical properties were investigated. It was shown that poly(3,4-ethylenedioxythiophene) of a linear conformation was formed in the presence of a cryogel based on sulfobetaine methacrylate, while minimum values of charge-transfer resistance were observed in those complexes, and electrochemical properties of the complexes did not depend on diffusion processes.
Collapse
|
5
|
Stager MA, Bardill J, Raichart A, Osmond M, Niemiec S, Zgheib C, Seal S, Liechty KW, Krebs MD. Photopolymerized Zwitterionic Hydrogels with a Sustained Delivery of Cerium Oxide Nanoparticle-miR146a Conjugate Accelerate Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:1092-1103. [PMID: 35167263 DOI: 10.1021/acsabm.1c01155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the United States, $87 billion per year is spent on the care of diabetic ulcers alone. Although the pathophysiology of diabetic wound healing is multifaceted, high systemic levels of inflammation and increased reactive oxygen species are often implicated in the wound healing impairment. Zwitterionic materials have been demonstrated to reduce inflammation and increase extracellular matrix deposition in wound beds, and here, we demonstrate a fabrication method for photopolymerized zwitterionic hydrogels that also enables sustained drug delivery over time. A therapeutic molecule of interest that is examined in this work is cerium oxide nanoparticle tagged with microRNA-146a (CNP-miR146a) to combat both oxidative stress and inflammation. The hydrogels are composed of zwitterionic and nonzwitterionic monomers, and the hydrogel formation occurs in the absence of a crosslinker. The hydrogels exhibit a wide range of stiffness and mechanical properties depending on their monomer content. Additionally, these hydrogels exhibit sustained release of nanoparticles and proteins. Finally, when employed in an in vivo diabetic mouse wound healing model, the zwitterionic hydrogels alone and laden with the CNP-miR146a conjugate significantly improved the rate of diabetic wound healing. Overall, these materials have excellent potential to be used as a topical treatment for chronic diabetic wounds.
Collapse
Affiliation(s)
- Michael A Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - James Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Alexandra Raichart
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Matthew Osmond
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Stephen Niemiec
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Sudipta Seal
- Department of Materials Science and Engineering, AMPAC, Nanoscience Technology Center, Biionix Cluster, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado 80217, United States
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Sievers J, Zimmermann R, Friedrichs J, Pette D, Limasale YDP, Werner C, Welzel PB. Customizing biohybrid cryogels to serve as ready-to-use delivery systems of signaling proteins. Biomaterials 2021; 278:121170. [PMID: 34628192 DOI: 10.1016/j.biomaterials.2021.121170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Macroporous cryogels have recently gained increasing interest for the controlled administration of signaling proteins in tissue engineering due to an advantageous combination of material properties. However, most of the previously reported cryogel systems did not allow for tunable, sustained protein release. We therefore designed a set of ready-to-use multi-armed polyethylene glycol (starPEG)-heparin cryogel systems containing different amounts of the protein-affine glycosaminoglycan component heparin to enable systematically tunable long-term delivery of different signaling proteins without affecting other cell-instructive properties. Experimental data and mathematical modeling indicate that the macroporous structure causes local differences in the concentration of proteins released into the pores and in the surrounding of the cryogels. As a proof-of-concept for their ready-to-use potential, cryogels pre-functionalized with signaling proteins and cell adhesion-peptides were demonstrated to induce the neuronal differentiation of colonizing pheochromocytoma cells. The elaborated approach opens up new perspectives for cryogels as easily storable and applicable systems for the precision delivery of signaling proteins.
Collapse
Affiliation(s)
- Jana Sievers
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Ralf Zimmermann
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Jens Friedrichs
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Dagmar Pette
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, 01062, Dresden, Germany.
| | - Petra Birgit Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany.
| |
Collapse
|
7
|
Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable Cryogels for Biomedical Applications. Trends Biotechnol 2020; 38:418-431. [DOI: 10.1016/j.tibtech.2019.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
|
8
|
Sener G, Hilton SA, Osmond MJ, Zgheib C, Newsom JP, Dewberry L, Singh S, Sakthivel TS, Seal S, Liechty KW, Krebs MD. Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing. Acta Biomater 2020; 101:262-272. [PMID: 31726250 DOI: 10.1016/j.actbio.2019.11.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Diabetics are prone to chronic wounds that have slower healing, and methods of accelerating the wound closure and to ensure protection from infections are critically needed. MicroRNA-146a gets dysregulated in diabetic wounds and injection of this microRNA combined with reactive oxygen species-scavenging cerium oxide nanoparticles (CNPs) can reduce inflammation and improve wound healing; however, a better delivery method than intradermal injections is needed. Here we demonstrate a biomaterial system of zwitterionic cryogels (gels formed below freezing temperatures) laden with CNP-miR146a that are topically applicable, injectable, self-healable, and provide sustained release of the therapeutic molecules. These cryogels are comprised of CBMA or SBMA and HEMA, and do not contain chemical crosslinkers. Properties of the gels can be manipulated by changing monomer type and ratio. These materials have demonstrated efficacy and viability in vivo with a diabetic mouse wound healing model. Overall, these materials have a high potential for application in wound treatments due to their ease of production, antifouling characteristics, durability, topical application, and sustained release mechanics. STATEMENT OF SIGNIFICANCE: This work presents the development of zwitterionic cryogels with unique physical properties including injectability and self-healing, that also offer highly sustained release of nanoparticles over time to improve wound healing in a diabetic mouse model. The nanoparticles are made of cerium oxide, which is known to scavenge reactive oxygen species and reduce oxidative stress, and these particles have been further tagged with a microRNA146a that has been shown to reduce inflammation. Zwitterionic materials are known for their superior antifouling properties and good biocompatibility and ability to incorporate bioactive factors. Given these properties, the use of these materials as wound healing dressings would be exciting, yet to date it has been difficult to prolong the release of bioactive factors from them due to their hydrophilicity. Previously we developed zwitterionic cyrogels with very sustained protein release over time, but those materials were quite brittle and difficult to handle. Here, we demonstrate for the first time that by removing the crosslinker molecule from our reaction and polymerizing gels under cryo-conditions, we are able to form zwitterionic cryogels that are injectable, self-healing, and with sustained release profiles. The sustained release of miRNA146a-tagged cerium oxide nanoparticles from these gels is demonstrated to speed up diabetic wound healing time and significantly reduce inflammation.
Collapse
|
9
|
Kudaibergenov SE. Physicochemical, Complexation and Catalytic Properties of Polyampholyte Cryogels. Gels 2019; 5:gels5010008. [PMID: 30795568 PMCID: PMC6473870 DOI: 10.3390/gels5010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Polyampholyte cryogels are a less considered subject in comparison with cryogels based on nonionic, anionic and cationic precursors. This review is devoted to physicochemical behavior, complexation ability and catalytic properties of cryogels based on amphoteric macromolecules. Polyampholyte cryogels are able to exhibit the stimuli-responsive behavior and change the structure and morphology in response to temperature, pH of the medium, ionic strength and water–organic solvents. Moreover, they can uptake transition metal ions, anionic and cationic dyes, ionic surfactants, polyelectrolytes, proteins, and enzymes through formation of coordination bonds, hydrogen bonds, and electrostatic forces. The catalytic properties of polyampholyte cryogels themselves and with immobilized metal nanoparticles suspended are outlined following hydrolysis, transesterification, hydrogenation and oxidation reactions of various substrates. Application of polyampholyte cryogels as a protein-imprinted matrix for separation and purification of biomacromolecules and for sustained release of proteins is demonstrated. Comparative analysis of the behavior of polyampholyte cryogels with nonionic, anionic and cationic precursors is given together with concluding remarks.
Collapse
Affiliation(s)
- Sarkyt E Kudaibergenov
- Institute of Polymer Materials and Technology, Microregion "Atyrau 1", house 3/1, Almaty 050019, Kazakhstan.
- Laboratory of Engineering Profile, K.I. Satpayev Kazakh National Research Technical University, Satpayev Str. 22, Almaty 050013, Kazakhstan.
| |
Collapse
|
10
|
Han Y, Yuan Z, Zhang P, Jiang S. Zwitterlation mitigates protein bioactivity loss in vitro over PEGylation. Chem Sci 2018; 9:8561-8566. [PMID: 30568780 PMCID: PMC6253718 DOI: 10.1039/c8sc01777h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Conjugation with poly(ethylene glycol) (PEG) or PEGylation is a widely used tool to overcome the shortcomings of native proteins, such as poor stability, inadequate pharmacokinetic (PK) profiles, and immunogenicity. However, PEGylation is often accompanied by an unwanted detrimental effect on bioactivity, particularly, resulting from the amphiphilic nature of PEG. This is especially true for PEGylated proteins with large binding targets. Pegasys, a PEGylated interferon alpha-2a (IFN-α2a) bearing a 40 kDa branched PEG, is a typical example that displays only 7% in vitro activity of the unmodified IFN-α2a. In this work, by employing IFN-α2a as a model protein, we demonstrated that a protein conjugated with zwitterionic polymers (or zwitterlation) could significantly mitigate the antiproliferative bioactivity loss in vitro after polymer conjugation. The retained antiproliferative activity of zwitterlated IFN-α2a is 4.4-fold higher than that of the PEGylated IFN-α2a with the same polymer molecular weight, or 3-fold higher than that of the PEGylated IFN-α2a with a similar hydrodynamic size. It is hypothesized that nonspecific interactions between zwitterionic polymers and IFN-α2a/IFN-α2a receptors can be mitigated due to the super-hydrophilic nature of zwitterionic polymers. This, in turn, reduces the 'nonspecific blocking' between IFN-α2a and IFN-α2a receptors. In addition, we demonstrated that zwitterlated IFN-α2a showed a prolonged circulation time and a mitigated accelerated blood clearance after repeated injections in rats.
Collapse
Affiliation(s)
- Yanjiao Han
- Molecular Engineering and Science Institute , University of Washington , Seattle , WA 98195 , USA .
| | - Zhefan Yuan
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| | - Peng Zhang
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| | - Shaoyi Jiang
- Molecular Engineering and Science Institute , University of Washington , Seattle , WA 98195 , USA .
- Department of Chemical Engineering , University of Washington , Seattle , WA 98195 , USA
| |
Collapse
|