1
|
Synthesis, characterization, and computational study of aggregates from amphiphilic calix[6]arenes. Effect of encapsulation on degradation kinetics of curcumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Kashapov R, Razuvayeva Y, Ziganshina A, Lyubina A, Amerhanova S, Sapunova A, Voloshina A, Nizameev I, Salnikov V, Zakharova L. Formation of supramolecular structures in aqueous medium by noncovalent interactions between surfactant and resorcin[4]arene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Distinctive spectroscopic properties and adsorption behaviors of p-sulfonatocalixarene-cetyltrimethylammonium bromide supra-amphiphilic systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Gajjar JA, Vekariya RH, Parekh HM. Recent advances in upper rim functionalization of resorcin[4]arene derivatives: Synthesis and applications. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1766080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinal A. Gajjar
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rajesh H. Vekariya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Hitesh M. Parekh
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Affiliation(s)
- Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
7
|
|
8
|
Wang J, Ding X, Guo X. Assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications in drug delivery and protein recognition. Adv Colloid Interface Sci 2019; 269:187-202. [PMID: 31082545 DOI: 10.1016/j.cis.2019.04.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Calixarene is the third generation of supra-molecular compounds after crown ether and cyclodextrin. Amphiphilic calixarene can be obtained by modulation with both hydrophilic group and hydrophobic alkyl chain. Compared with conventional surfactant, amphiphilic calixarene has much lower critical micelle concentration and is much easier to self-assemble into different morphological aggregates. Calixarene-basedsupra-amphiphile can be designed via noncovalent bonds due to the capability of calixarene to recognize surfactant; the binding of a surfactant with calixarene can decrease the critical micelle concentration of surfactant by several times. The calixarene-surfactant complex can self-aggregate to form spherical micelles, vesicles, and spherical nanoparticles, and the aggregation behavior can be controlled by the structures and the molar ratio of surfactant to calixarene and environmental factors. Calixarene-based amphiphile and supra-amphiphile show low cytotoxicity. They can load drugs and assemble into nanocapsules with drugs. The structure of the calixarene-drug complex can respond to external stimuli, rendering the sustained release of the drug and suggesting its potential application as a drug delivery system. Recently, calixarene has also been found to selectively bind proteins, suggesting its prospect in disease diagnosis and intervention treatment in clinics. This review elaborates on the research progress in the self-assembly behaviors of calixarene-based amphiphile and supra-amphiphile and the applications of the calixarenes in drug delivery and protein recognition. The prospectives for the studies are also provided in this review.
Collapse
|
9
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Konovalov AI. Nanoassociates of amphiphilic carboxy-calixresorcinarene and cetylpyridinuim chloride: The search of optimal macrocycle/surfactant molar ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Morozova JE, Syakaev VV, Shalaeva YV, Ermakova AM, Nizameev IR, Kadirov MK, Voloshina AD, Zobov VV, Antipin IS, Konovalov AI. Unusual nanosized associates of carboxy-calix[4]resorcinarene and cetylpyridinium chloride: the macrocycle as a glue for surfactant micelles. SOFT MATTER 2017; 13:2004-2013. [PMID: 28197613 DOI: 10.1039/c7sm00004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
Collapse
Affiliation(s)
- Ju E Morozova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - V V Syakaev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - Ya V Shalaeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A M Ermakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - I R Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan National Research Technical University, K. Marx str. 10, 420111 Kazan, Russian Federation
| | - M K Kadirov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - A D Voloshina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - V V Zobov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| | - I S Antipin
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation. and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation
| | - A I Konovalov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Science, Arbuzov str. 8, 420088 Kazan, Russian Federation.
| |
Collapse
|
12
|
Self-assembly strategy for the design of soft nanocontainers with controlled properties. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|