1
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
2
|
Devkar P, Nangare S, Zawar L, Shirsath N, Bafna P, Jain P. Design of polyacrylamide grafted sesbania gum-mediated pH-responsive IPN-based microbeads for delivery of diclofenac sodium: In-vitro-in-vivo characterizations. Int J Biol Macromol 2023; 230:123360. [PMID: 36716842 DOI: 10.1016/j.ijbiomac.2023.123360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Microwave-assisted grafting of polyacrylamide on sesbania gum (PAAM-g-SG) was implemented employing a 32 full factorial experimental design and was hydrolyzed using sodium hydroxide (NaOH) to form H-PAAM-g-SG. Further, the diclofenac sodium-loaded novel pH-sensitive interpenetrating polymeric network (IPN) microbeads were designed using an optimized H-PAAM-g-SG and sodium alginate (SA). Different spectroscopic analysis including FTIR spectroscopy, 1H NMR spectroscopy, elemental analysis, thermal analysis, etc. was performed to confirm the synthesis of PAAM-g-SG and diclofenac-loaded pH-sensitive IPN H-PAAM-g-SG-SA microbeads. Here, Ca+2 ions combine with two strands of SA and form a round-shape structure that encloses uncross-linked H-PAAM-g-SG polymer and diclofenac sodium. As well, glutaraldehyde (GL) addition improved the mechanical strength due to acetal structure between hydroxyl of H-PAAM-g-SG and aldehyde of GL. The drug entrapment was confirmed proportional relationship to the Ca+2 ions concentration whereas an increase in GL concentration resulted in a reduced drug entrapment. The pH pulsatile study assured the reversible swelling-shrinkage behavior of IPN microbeads due to the carboxyl group of PAAM-g-SG. The drug release from H-PAAM-g-SG-SA microbeads (batch: S9) was found to be 84.21 % (12h) which was non-significant (p > 0.05; f2 = 79 ∼ 90) over marketed formulation (83.31 %). Moreover, it follows the Korsmeyer Peppas (R2 = 0.996) as the best-fit release kinetic model. The pH-sensitive release of diclofenac sodium from IPN H-PAAM-g-SG-SA microbeads was assured based on in vivo anti-inflammatory activity (p < 0.05). Therefore, developed novel pH-sensitive IPN microbeads based on H-PAAM-g-SG are a promising polymeric carrier substitute for delivery of drugs actuated by a pH stimulus.
Collapse
Affiliation(s)
- Pratiksha Devkar
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Sopan Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Laxmikant Zawar
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India.
| | - Nitin Shirsath
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Piyush Bafna
- Department of Pharmacology, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| | - Pankaj Jain
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra state, India
| |
Collapse
|
3
|
Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Jha S, Malviya R, Fuloria S, Sundram S, Subramaniyan V, Sekar M, Sharma PK, Chakravarthi S, Wu YS, Mishra N, Meenakshi DU, Bhalla V, Djearamane S, Fuloria NK. Characterization of Microwave-Controlled Polyacrylamide Graft Copolymer of Tamarind Seed Polysaccharide. Polymers (Basel) 2022; 14:1037. [PMID: 35267860 PMCID: PMC8914783 DOI: 10.3390/polym14051037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
The main objective of the study was to prepare tamarind seed polysaccharide grafted copolymers of polyacrylamide (TSP-g-Am) using a 32 factorial design. Tamarind seed polysaccharide (TSP) was extracted, and grafted copolymer of TSP was prepared using polyacrylamide as copolymer and ceric ammonium nitrate as initiator. Various batches (F1-F9) of TSP-g-Am were prepared, among which F1 showed highest grafting efficiency; hence, the prepared TSP-g-Am (F1) was evaluated for grafting efficiency, conversion, effect of initiator and further characterized using SEM analysis, contact angle determination, DSC analysis, swelling index, swelling and deswelling, and chemical resistance. The contact angle of TSP was found to be 81 ± 2, and that of TSP-g-Am (F1) was found to be 74 ± 2, which indicates that the wetting ability of the grafted copolymer was less than that of the native polymer. The results of thermal analysis indicated that TSP-g-Am had a more stable molecular structure than TSP. The morphology of the grafted polymer was observed from SEM images, and it was observed that the particles was asymmetrical. Antimicrobial activity was also found in the grafted copolymer. The present study concludes that the TSP-g-Am showed an excellent performance in thermal stability and swelling capacity compared with TSP. The detailed structural characteristics, as well as the excellent thermal stability and swelling capacities, will make it beneficial to use the synthesised copolymer as a precursor for the production of large-scale eco-friendly advanced materials with a wide range of applications, acting as a stabiliser, thickener, binder, release retardant, modifier, suspending agent, viscosity enhancer, emulsifying agent, or carrier for novel drug delivery systems in oral, buccal, colon, and ocular systems, and in nanofabrication and wound dressing, and it is also becoming an important part of food, cosmetics, confectionery, and bakery.
Collapse
Affiliation(s)
- Sheetal Jha
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 201310, India; (S.J.); (R.M.); (S.S.); (N.M.)
| | - Rishabha Malviya
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 201310, India; (S.J.); (R.M.); (S.S.); (N.M.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia
| | - Sonali Sundram
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 201310, India; (S.J.); (R.M.); (S.S.); (N.M.)
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia; (V.S.); (S.C.)
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia;
| | | | - Srikumar Chakravarthi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Malaysia; (V.S.); (S.C.)
| | - Yuan Seng Wu
- Department of Biological Sciences, School of Medical and Life Sciences, Centre for Virus and Vaccine Research, Sunway University, Subang Jaya 47500, Malaysia;
| | - Neelesh Mishra
- Department of Pharmacy, SMAS, Galgotias University, Greater Noida 201310, India; (S.J.); (R.M.); (S.S.); (N.M.)
| | | | - Vijay Bhalla
- SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, India;
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai 600077, India
| |
Collapse
|
5
|
Yu Y, Yang Q, Wang Z, Ding Q, Li M, Fang Y, He Q, Zhu YZ. The Anti-Inflammation and Anti-Nociception Effect of Ketoprofen in Rats Could Be Strengthened Through Co-Delivery of a H 2S Donor, S-Propargyl-Cysteine. J Inflamm Res 2021; 14:5863-5875. [PMID: 34785926 PMCID: PMC8590460 DOI: 10.2147/jir.s333326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Ketoprofen (KETO) is a traditional non-steroidal anti-inflammatory drug (NSAIDs) with good analgesic and antipyretic effects. However, as NASIDs, the toxicity of KETO towards gastrointestinal (GI) system might limit its clinical use. S-propargyl-cysteine (SPRC) is an excellent endogenous H2S donor showed wide application in the field of anti-inflammation, anti-oxidative stress, or even the protection of cardiovascular system through the elevation of endogenous H2S concentration. As recently studies reported, co-administration of H2S donor might potentially mitigate the GI toxicity and relevant side effects induced by series of NSAIDs. METHODS In this study, we established a SPRC and KETO co-encapsulated poly (lactic-co-glycolic acid) microsphere (SK@MS), and its particle size, morphology, storage stability and in vitro release profile were firstly investigated. The elevation of endogenous H2S level of SK@MS was then calculated, and the pharmacodynamic study (anti-inflammation and analgesic effects) of SK@MS, SPRC, and KETO towards adjuvant induced arthritis (AIA) in rats were also studied. Finally, to test the potential side effect, the heart, liver, spleen, lung, kidney, stomach, small intestine, and large intestine were resected from rats and examined by H&E staining. RESULTS A monodispersed SK@MS could be observed under the SEM, and particle size was calculated around 25.12 μm. The loading efficiency (LE) for SPRC and KETO were 6.67% and 2.64%, respectively, while the encapsulation efficiency (EE) for SPRC and KETO were 37.20% and 68.28%, respectively. SK@MS showed a sustained release of SPRC and KETO in vitro, which was up-to 15 days. SK@MS could achieve a long-term elevation of the H2S concentration in vivo, while SPRC showed an instant H2S elevation and metabolize within 6 h. Interestingly, the KETO did not show any influence on the H2S concentration in vivo. After establishment of AIA model, neither SPRC nor KETO showed scarcely anti-inflammation and anti-nociception effect, while conversely, SK@MS showed an obvious mitigation towards paw edema and pain in AIA rats, which indicated an improved anti-inflammation and anti-nociception effect when co-delivery of SRC and KETO. Besides, low stimulation towards major organs in rats observed in any experimental group. CONCLUSION A monodispersed was successfully prepared in this study, and SK@MS showed a sustained SPRC and KETO release in vitro and H2S release in vivo. In the pharmacodynamics study, SK@MS not only exhibited an excellent anti-inflammation and analgesic effects in AIA rats but also showed low stimulation towards rats.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Qida He
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, Macau SAR, People's Republic of China
- Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications. J Microbiol Methods 2019; 159:200-210. [DOI: 10.1016/j.mimet.2019.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 11/23/2022]
|
7
|
Lactoferrin-Loaded Alginate Microparticles to Target Clostridioides difficile Infection. J Pharm Sci 2019; 108:2438-2446. [PMID: 30851342 DOI: 10.1016/j.xphs.2019.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Some forms of bovine lactoferrin (bLf) are effective in delaying Clostridioides difficile growth and preventing toxin production. However, therapeutic use of bLf may be limited by protein stability issues. The objective of this study was to prepare and evaluate colon-targeted, pH-triggered alginate microparticles loaded with bioactive bLf and to evaluate their anti-C difficile defense properties in vitro. Different forms of metal-bound bLf were encapsulated in alginate microparticles using an emulsification or internal gelation method. The microparticles were coated with chitosan to control protein release. In vitro drug release studies were conducted in pH-simulated gastrointestinal conditions to investigate the release kinetics of encapsulated protein. No significant release of metal-bound bLf was observed at acidic pH; however, on reaching simulated colonic pH, most of the encapsulated lactoferrin was released. The application of bLf (5 mg/mL) delivered from alginate microparticles to human intestinal epithelial cells significantly reduced the cytotoxic effects of toxins A and B as well as bacterial supernatant on Caco-2 and Vero cells, respectively. These results are the first to suggest that alginate-bLf microparticles show protective effects against C difficile toxin-mediated epithelial damage and impairment of barrier function in human intestinal epithelial cells. The future potential of lactoferrin-loaded alginate microparticles against C difficile deserves further study.
Collapse
|
8
|
Alasvand N, Kargozar S, Milan PB, Chauhan NPS, Mozafari M. Functionalized polymers for drug/gene-delivery applications. ADVANCED FUNCTIONAL POLYMERS FOR BIOMEDICAL APPLICATIONS 2019:275-299. [DOI: 10.1016/b978-0-12-816349-8.00014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Salehi Dashtebayaz MS, Nourbakhsh MS. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mohammad Sadegh Nourbakhsh
- Materials and Metallurgical Engineering, Central Administration of Semnan University, Semnan University, Semnan, Iran (the Islamic Republic of)
| |
Collapse
|
10
|
Prusty K, Swain SK. Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:130-141. [DOI: 10.1016/j.msec.2017.11.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 01/23/2023]
|
11
|
Functionally modified polyacrylamide- graft -gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug. Int J Biol Macromol 2017; 102:829-839. [DOI: 10.1016/j.ijbiomac.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022]
|
12
|
Medeiros SF, Lopes MV, Rossi-Bergmann B, Ré MI, Santos AM. Synthesis and characterization of poly(N-vinylcaprolactam)-based spray-dried microparticles exhibiting temperature and pH-sensitive properties for controlled release of ketoprofen. Drug Dev Ind Pharm 2017; 43:1519-1529. [DOI: 10.1080/03639045.2017.1321660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Simone F. Medeiros
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Milene V. Lopes
- Laboratory of Immunopharmacology (IBiof), Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Laboratory of Immunopharmacology (IBiof), Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Inês Ré
- Mines Albi, UMR-CNRS 5302, Centre RAPSODEE, Université de Toulouse, Campus Jarlard, Albi, France
| | - Amilton M. Santos
- Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| |
Collapse
|
13
|
Mauri E, Papa S, Masi M, Veglianese P, Rossi F. Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv 2017; 14:1305-1313. [DOI: 10.1080/17425247.2017.1285280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emanuele Mauri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Simonetta Papa
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Maurizio Masi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| |
Collapse
|
14
|
Alange VV, Birajdar RP, Kulkarni RV. Novel spray dried pH-sensitive polyacrylamide-grafted-carboxymethylcellulose sodium copolymer microspheres for colon targeted delivery of an anti-cancer drug. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:139-161. [DOI: 10.1080/09205063.2016.1257083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vijaykumar V. Alange
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, BLDE University Campus, Vijayapur (Bijapur), India
| | - Ravindra P. Birajdar
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, BLDE University Campus, Vijayapur (Bijapur), India
| | - Raghavendra V. Kulkarni
- Department of Pharmaceutics, BLDEA’s SSM College of Pharmacy and Research Centre, BLDE University Campus, Vijayapur (Bijapur), India
| |
Collapse
|