1
|
Shu X, Feng J, Feng J, Huang X, Li L, Shi Q. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro. J Biomater Appl 2018; 32:547-560. [PMID: 29113568 DOI: 10.1177/0885328217737654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, nano-doped calcium phosphate cement delivery systems (poly (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramics and nano (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramic) were fabricated, and low doses (10 µg/g) of two growth factors, insulin-like growth factor-1 and bone morphogenetic protein-2, were encapsulated then sequentially released. We characterized the delivery systems using Fourier transform infrared spectroscopy and X-ray diffraction and measured washout resistance and compressive strength, and thus optimized the most appropriate proportioning of delivery systems for the two growth factors. One of the growth factors was absorbed by the nano-poly (γ-glutamic acid)/β-tricalcium phosphate, which was then mixed into the calcium phosphate ceramic solid phase to create a new solid phase calcium phosphate ceramic. Nano-poly (γ-glutamic acid)/β-tricalcium phosphate/calcium phosphate ceramic carriers were then prepared by blending the new calcium phosphate ceramic solid phase powder with a solution of the remaining growth factor. The effects of different release patterns (studying sequential behavior) of insulin-like growth factor-1 and bone morphogenetic protein-2 on osteogenic proliferation and differentiation of the MC3t3-E1 mouse osteoblast cell were investigated. This combinational delivery system provided a controlled release of the two growth factors, in which nano-doping significantly affected their release kinetics. The incorporation of dual growth factors could potentially stimulate bone healing and promoting bone ingrowth processes at a low dose.
Collapse
Affiliation(s)
- Xiulin Shu
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Jin Feng
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Jing Feng
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Xiaomo Huang
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Liangqiu Li
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| | - Qingshan Shi
- 1 Guangdong Institute of Microbiology, China.,2 State Key Laboratory of Applied Microbiology Southern China, China.,3 Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, China.,4 Guangdong Open Laboratory of Applied Microbiology, China
| |
Collapse
|
2
|
Al-Jarsha M, Moulisová V, Leal-Egaña A, Connell A, Naudi KB, Ayoub AF, Dalby MJ, Salmerón-Sánchez M. Engineered Coatings for Titanium Implants To Present Ultralow Doses of BMP-7. ACS Biomater Sci Eng 2018; 4:1812-1819. [PMID: 29862317 PMCID: PMC5973637 DOI: 10.1021/acsbiomaterials.7b01037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/22/2018] [Indexed: 01/11/2023]
Abstract
![]()
The
ongoing research to improve the clinical outcome of titanium
implants has resulted in the implemetation of multiple approches to
deliver osteogenic growth factors accelerating and sustaining osseointegration.
Here we show the presentation of human bone morphogenetic protein
7 (BMP-7) adsorbed to titanium discs coated with poly(ethyl acrylate)
(PEA). We have previously shown that PEA promotes fibronectin organization
into nanonetworks exposing integrin- and growth-factor-binding domains,
allowing a synergistic interaction at the integrin/growth factor receptor
level. Here, titanium discs were coated with PEA and fibronectin and
then decorated with ng/mL doses of BMP-7. Human mesenchymal stem cells
were used to investigate cellular responses on these functionalized
microenvironments. Cell adhesion, proliferation, and mineralization,
as well as osteogenic markers expression (osteopontin and osteocalcin)
revealed the ability of the system to be more potent in osteodifferentiation
of the mesenchymal cells than combinations of titanium and BMP-7 in
absence of PEA coatings. This work represents a novel strategy to
improve the biological activity of titanium implants with BMP-7.
Collapse
Affiliation(s)
- Mohammed Al-Jarsha
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom.,Department of Oral Surgery, College of Dentistry, University of Baghdad, 10001Baghdad, Iraq
| | - Vladimíra Moulisová
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Aldo Leal-Egaña
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Andrew Connell
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Kurt B Naudi
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom
| | - Ashraf F Ayoub
- Department of Oral and Maxillofacial Surgery, Dental Hospital and School, Glasgow University, G2 3JZ Glasgow, United Kingdom
| | - Matthew J Dalby
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Manuel Salmerón-Sánchez
- The Centre for the Cellular Microenvironment, University of Glasgow, G12 8LT Glasgow, United Kingdom
| |
Collapse
|
3
|
Zhang J, Li J, Jia G, Jiang Y, Liu Q, Yang X, Pan S. Improving osteogenesis of PLGA/HA porous scaffolds based on dual delivery of BMP-2 and IGF-1 via a polydopamine coating. RSC Adv 2017. [DOI: 10.1039/c7ra12062a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To engineer bone tissue, an ideal biodegradable implant should be biocompatible, biodegradable, osteoinductive and osteoconductive.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Jianan Li
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Guoliang Jia
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Yikun Jiang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Qinyi Liu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- China
| |
Collapse
|