1
|
Saylan Y, Aliyeva N, Eroglu S, Denizli A. Nanomaterial-Based Sensors for Coumarin Detection. ACS OMEGA 2024; 9:30015-30034. [PMID: 39035881 PMCID: PMC11256117 DOI: 10.1021/acsomega.4c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Sensors are widely used owing to their advantages including excellent sensing performance, user-friendliness, portability, rapid response, high sensitivity, and specificity. Sensor technologies have been expanded rapidly in recent years to offer many applications in medicine, pharmaceuticals, the environment, food safety, and national security. Various nanomaterial-based sensors have been developed for their exciting features, such as a powerful absorption band in the visible region, excellent electrical conductivity, and good mechanical properties. Natural and synthetic coumarin derivatives are attracting attention in the development of functional polymers and polymeric networks for their unique biological, optical, and photochemical properties. They are the most abundant organic molecules in medicine because of their biological and pharmacological impacts. Furthermore, coumarin derivatives can modulate signaling pathways that affect various cellular processes. This review covers the discovery of coumarins and their derivatives, the integration of nanomaterial-based sensors, and recent advances in nanomaterial-based sensing for coumarins. This review also explains how sensors work, their types, their pros and cons, and sensor studies for coumarin detection in recent years.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Nilufer Aliyeva
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Seckin Eroglu
- Department
of Biological Sciences, Middle East Technical
University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Pan Y, Liu J, Wang J, Gao Y, Ma N. Application of Biosensors and Biomimetic Sensors in Dairy Products Testing. J Dairy Sci 2024:S0022-0302(24)00894-4. [PMID: 38851568 DOI: 10.3168/jds.2024-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| |
Collapse
|
3
|
Otaif K, Fouad MM, Rashed NS, Hosni NY, Elsonbaty A, Elgazzar E. Green Prospective Approach of Chromium Zinc Oxide Nanoparticles for Highly Ultrasensitive Electrochemical Detection of Anti-hypotensive Medication in Various Matrices. ACS OMEGA 2023; 8:30081-30094. [PMID: 37636946 PMCID: PMC10448688 DOI: 10.1021/acsomega.3c02381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023]
Abstract
A highly ultrasensitive sensor that relied on Cr/ZnO-NPs was developed to detect etilefrine hydrochloride (ETF) in different matrices via a particular green voltammetric technique. The X-ray diffraction pattern showed the nanomaterials of the polycrystalline hexagonal structure. The energy-dispersive X-ray spectrum approved the presence of Cr3+ inside the host zinc oxide framework. The morphological and topological characteristics were visualized using transmission electron microscopy and atomic force microscopy micrographs describing the nanoparticles in spherical-like shape with large-surface area. The energy gap (Eg) was evaluated from transmittance (T %) and reflectance (R %) spectra within the visible region. The optimization study indicated that the Cr/ZnO-NP/CPE sensor has high sensitivity, thanks to the distinctive physical and chemical properties of the fabricated electrode. A new approach showed a great selectivity for determining ETF in different matrices in the presence of other interferents like levodopa. Under optimal circumstances, the square-wave voltammetry revealed a linear response to ETF from 0.01 to 10 μmol L-1 (r = 0.9996) with quantification and detection limits of 9.11 and 2.97 nmol L-1, respectively. Finally, the proposed approach was effectively applied to estimate ETF in pharmaceutical dosage forms and biological fluids using simple, accurate, and selective electrochemical electrode. The greenness profile assessment of the developed method was performed using the Eco-Scale and green analytical procedure index. These tools indicated that the proposed method is an eco-friendly technique for the determination of ETF in different matrices.
Collapse
Affiliation(s)
- Khadejah
D. Otaif
- Department
of Chemistry, Samtah University College, Jazan University, Samtah, Jazan 86736, Saudi Arabia
| | - Manal M. Fouad
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Noha S. Rashed
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11765, Cairo, Egypt
| | - Noha Y.Z. Hosni
- Pharmaceutical
Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11765, Cairo, Egypt
| | - Ahmed Elsonbaty
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr
City 11829, Cairo, Egypt
| | - Elsayed Elgazzar
- Associate
Professor of Physics, Physics Department, Faculty of Science, Suez Canal University, Ismailia 41511, Egypt
| |
Collapse
|
4
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Anusha T, Bhavani KS, Hassan RYA, Brahman PK. Ferrocene tagged primary antibody generates electrochemical signal: An electrochemical immunosensing platform for the monitoring of vitamin D deficiency in clinical samples. Int J Biol Macromol 2023; 239:124269. [PMID: 37003374 DOI: 10.1016/j.ijbiomac.2023.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
In this paper, a new kind of ultrasensitive and low-cost electrochemical immunosensing probe was designed to monitor vitamin D deficiency using 25(OH)D3 as a clinical biomarker. Ferrocene carbaldehyde conjugated on Ab-25(OH)D3 antibodies was used as an electrochemical probe for generating signals. The graphene nanoribbon-modified electrode (GNRs) was used to immobilize the (Ab-25(OH)D3-Fc) conjugate. The high electron transferability, greater surface area, and effective biocompatibility of GNRs enabled the capture of the greater number of primary antibodies (Ab-25(OH)D3). The developed probe was structurally and morphologically characterized. The step-wise modification was investigated by electrochemical techniques. The direct electrochemistry of ferrocene enabled 25(OH)D3 biomarker detection with excellent sensitivity. The reduction in peak current was proportional to the concentrations of 25(OH)D3 in the range of 1-100 ng mL-1 with a 0.1 ng mL-1 limit of detection. The probe was tested in terms of reproducibility, repeatability, and stability. Finally, the developed immunosensing probe was applied in serum samples for 25(OH)D3 quantification, and no significant difference was noticed in the assay results when compared with the standard chemiluminescent immunoassay (CLIA) method. The developed detection strategy has a wider scope for future potential clinical diagnostics applications.
Collapse
Affiliation(s)
- Tummala Anusha
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India; Chemsens Technologies PVT. LTD., Vijayawada 520013, Andhra Pradesh, India
| | - Kalli Sai Bhavani
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, Giza 12622, Egypt; Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Pradeep Kumar Brahman
- Electroanalytical Lab, Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh, India; Chemsens Technologies PVT. LTD., Vijayawada 520013, Andhra Pradesh, India.
| |
Collapse
|
6
|
Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fabrication of handmade paper sensor based on silver-cobalt doped copolymer-ionic liquid composite for monitoring of vitamin D3 level in real samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Kaur A, Kapoor S, Bharti A, Rana S, Chaudhary GR, Prabhakar N. Gold‑platinum bimetallic nanoparticles coated 3-(aminopropyl)triethoxysilane (APTES) based electrochemical immunosensor for vitamin D estimation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114400] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Đurović A, Stojanović Z, Kravić S, Kos J, Richtera L. Electrochemical Determination of Vitamin D
3
in Pharmaceutical Products by Using Boron Doped Diamond Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201900532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana Đurović
- University of Novi Sad, Faculty of Technology Novi SadDepartment of Applied and Engineering Chemistry Bulevar cara Lazara 1 Novi Sad Serbia
| | - Zorica Stojanović
- University of Novi Sad, Faculty of Technology Novi SadDepartment of Applied and Engineering Chemistry Bulevar cara Lazara 1 Novi Sad Serbia
| | - Snežana Kravić
- University of Novi Sad, Faculty of Technology Novi SadDepartment of Applied and Engineering Chemistry Bulevar cara Lazara 1 Novi Sad Serbia
| | - Jovana Kos
- University of Novi SadInstitute of Food Technology Bulevar cara Lazara 1 21000 Novi Sad Serbia
| | - Lukáš Richtera
- Department of Chemistry and BiochemistryMendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
- Central European Institute of TechnologyBrno University of Technology Purkyňova 123 612 00 Brno Czech Republic
| |
Collapse
|
10
|
Raymundo-Pereira PA, Baccarin M, Oliveira ON, Janegitz BC. Thin Films and Composites Based on Graphene for Electrochemical Detection of Biologically-relevant Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Paulo A. Raymundo-Pereira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Marina Baccarin
- São Carlos Institute of Chemistry; University of São Paulo; CP 380, CEP 13566-590 São Carlos, SP Brazil
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics; University of São Paulo; CP 369, CEP 13560-970 São Carlos, SP Brazil
| | - Bruno C. Janegitz
- Department of Nature Sciences, Mathematics and Education; Federal University of São Carlos; CEP 13600-970 Araras, SP Brazil
| |
Collapse
|
11
|
Raymundo-Pereira PA, Campos AM, Vicentini FC, Janegitz BC, Mendonça CD, Furini LN, Boas NV, Calegaro ML, Constantino CJ, Machado SA, Oliveira ON. Sensitive detection of estriol hormone in creek water using a sensor platform based on carbon black and silver nanoparticles. Talanta 2017; 174:652-659. [DOI: 10.1016/j.talanta.2017.06.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023]
|
12
|
Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MH, Gobbi AL, Machado SA, Oliveira ON. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosens Bioelectron 2016; 86:369-376. [DOI: 10.1016/j.bios.2016.06.053] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/10/2016] [Accepted: 06/18/2016] [Indexed: 12/17/2022]
|
13
|
Raymundo-Pereira PA, Campos AM, Prado TM, Furini LN, Boas NV, Calegaro ML, Machado SA. Synergy between Printex nano-carbons and silver nanoparticles for sensitive estimation of antioxidant activity. Anal Chim Acta 2016; 926:88-98. [DOI: 10.1016/j.aca.2016.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
|