1
|
Blagodatskikh IV, Vyshivannaya OV, Tishchenko NA, Bezrodnykh EA, Piskarev VE, Aysin RR, Antonov YA, Orlov VN, Tikhonov VE. Interaction between reacetylated chitosan and albumin in alcalescent media. Carbohydr Res 2024; 545:109277. [PMID: 39299161 DOI: 10.1016/j.carres.2024.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Interaction of chitosan and its derivatives with proteins of animal blood at blood pH relevant conditions is of a particular interest for construction of antimicrobial chitosan/protein-based drug delivery systems. In this work, the interaction of a series of N-reacetylated oligochitosans (RA-CHI) having Mw of 10-12 kDa and differing in the degree of acetylation (DA 19, 24, and 40 %) with bovine serum albumin (BSA) in alkalescent media is described in first. It is shown that RA-CHI forms soluble complexes with BSA in solutions with pH 7.4 and a low ionic strength. Light scattering study shows that soluble RA-CHI complexes have spherical form with the radius of about 100 nm. Circular dichroism, fluorescent spectroscopy, and micro-IR spectroscopy studies show that the secondary structure of BSA in soluble complexes remain intact. Isothermal titration calorimetry of RA-CHI with DA 24 % and BSA mixing in the buffers with different ionization heats reveals a significant contribution of electrostatic forces to the binding process and an additional ionization of chitosan due to the proton transfer from the buffer substance. An increase of ionic strength to the blood relevant value 0.15 M suppresses the binding. It is shown that application of RA-CHI with higher DA value leads to a decrease in the affinity of RA-CHI to BSA and an alteration of the interaction mechanism. The finding opens an opportunity to the application of N-reacetylated chitosan derivatives in the complex systems compatible with blood plasma proteins.
Collapse
Affiliation(s)
- Inesa V Blagodatskikh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Oxana V Vyshivannaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia; Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, 119991, Russia
| | - Nikita A Tishchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Evgeniya A Bezrodnykh
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Vladimir E Piskarev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Rinat R Aysin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia
| | - Yurij A Antonov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Victor N Orlov
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskie Gory, 1-40, Moscow, 119992, Russia
| | - Vladimir E Tikhonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, bld. 1, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Chen C, Alfredo YY, Lee YY, Tan CP, Wang Y, Qiu C. Physicochemical and biological characterization of the lipid particles with bovine serum albumin corona. Int J Biol Macromol 2024; 281:136223. [PMID: 39366617 DOI: 10.1016/j.ijbiomac.2024.136223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Diacylglycerol-based nanoparticles are promising bioactive delivery systems. However, limited understanding of their interaction with biological entities restricts their clinical use. This study investigated the protein corona formed on medium and long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (NPs) modified by Polyoxethylene stearate (PEG) and compared to glyceryl tristearate (TG) and cetyl palmitate (CP) nanoparticles. Bovine serum albumin (BSA) formed corona with MLCD NPs through hydrophobic interactions and hydrogen bonding, contributing to a decrease in α-helix, an increase in β-sheet and a change in the microenvironment of Tyr residues. Owing to higher lipid hydrophilicity, MLCD NPs showed a much lower affinity for BSA than TG and CP NPs, and the binding constant with BSA was increased for larger NPs. PEG modification and the protein corona reduced the uptake of NPs by macrophages but exerted little influence on B16 cell. Among the NPs with different lipid core, the MLCD NPs showed a lower macrophages cell uptake but higher B16 cell uptake, suggesting a longer circulation time in blood but higher cancer cell internalization. This work shed light on the interactions between MLCD NPs and proteins, which is significant for application as nanocarriers with improved biological efficacy.
Collapse
Affiliation(s)
- Canfeng Chen
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Ye Alfredo
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
4
|
Baruah K, Singh AK, Kumari K, Nongbri DL, Jha AN, Singha Roy A. Interactions of Turmeric- and Curcumin-Functionalized Gold Nanoparticles with Human Serum Albumin: Exploration of Protein Corona Formation, Binding, Thermodynamics, and Antifibrillation Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1381-1398. [PMID: 38159065 DOI: 10.1021/acs.langmuir.3c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements. Fluorescence-based methods, absorbance, and SERS experiments were carried out to evaluate the binding aspects of AuNPs with HSA. We found that the AuNPs show moderate binding affinity toward HSA (Kb ∼ 104 M-1), irrespective of the capping agents on the surface. Hydrophobic association, along with some contribution of electrostatic interaction, played a key role in the binding process. The binding interaction was more toward the subdomain IIA region of HSA, as indicated by the competitive displacement studies using site-specific binders (warfarin and flufenamic acid). Because of the large surface curvature of small-sized AuNPs, the secondary structural conformations of HSA were slightly altered, as revealed by circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and surface-enhanced Raman scattering (SERS) measurements. Additionally, the findings of the binding interactions were re-evaluated using molecular dynamics (MD) simulation studies by determining the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and changes in the binding energy of HSA upon complexation with AuNPs. To determine the tentative evidence for pharmacokinetic administration, these biocompatible AuNPs were applied to inhibit the amyloid fibril formation of HSA and monitored by using the thioflavin T (ThT) assay, ANS fluorescence assay, fluorescence microscopic imaging, and FESEM. AuNPs were found to show better resistance toward fibrillation of the adsorbed protein.
Collapse
Affiliation(s)
- Kakali Baruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Ajit Kumar Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Kalpana Kumari
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam India
| | - Dasuk Lyngdoh Nongbri
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| |
Collapse
|
5
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
6
|
Naseem N, Ahmad MF, Malik S, Khan RH, Siddiqui WA. The potential of esculin in ameliorating Type-2 diabetes mellitus induced neuropathy in Wistar rats and probing its inhibitory mechanism of insulin aggregation. Int J Biol Macromol 2023; 242:124760. [PMID: 37156314 DOI: 10.1016/j.ijbiomac.2023.124760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Diabetic neuropathy encompasses multiple pathological disturbances, many of which coincide with the pathophysiological mechanisms of neurodegenerative disorders. In the present study, various biophysical techniques like Rayleigh light scattering assay, Thioflavin T assay, far-UV Circular Dichroism spectroscopy, Transmission electron microscopy have unveiled the anti-fibrillatory effect of esculin upon human insulin fibrillation. MTT cytotoxicity assay demonstrated the biocompatibility of esculin and in-vivo studies such as behavioral tests like hot plate test, tail immersion test, acetone drop test, plantar test were performed for validating diabetic neuropathy. Assessment of levels of serum biochemical parameters, oxidative stress parameters, pro-inflammatory cytokines as well as neuron specific markers was done in the current study. Rat brains were subjected to histopathology and their sciatic nerves were subjected to transmission electron microscopy to analyze myelin structure alterations. All these results reveal that esculin ameliorates diabetic neuropathy in experimental diabetic rats. Conclusively, our study demonstrates the anti-amyloidogenic potential of esculin in the form of inhibition of human insulin fibrillation, making it a promising candidate in combating neurodegenerative disorders in the near future and the results of various behavioral, biochemical, and molecular studies reveal that esculin possesses anti-lipidemic, anti-inflammatory, anti-oxidative and neuroprotective properties which help in ameliorating diabetic neuropathy in streptozotocin induced diabetic Wistar rats.
Collapse
Affiliation(s)
- Nida Naseem
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Md Fahim Ahmad
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sadia Malik
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Rizwan Hasan Khan
- Research Lab-3, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| | - Waseem A Siddiqui
- Research Lab-1, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
7
|
Inhibition of lysozyme amyloid fibrillation by curcumin-conjugated silver nanoparticles: A multispectroscopic molecular level study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Moulod M, Moghaddam S. Insights from molecular dynamics simulations of albumin adsorption on hydrophilic and hydrophobic surfaces. J Mol Graph Model 2022; 112:108120. [PMID: 34998131 PMCID: PMC8993224 DOI: 10.1016/j.jmgm.2021.108120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022]
Abstract
Protein adsorption at the surface affects the material biocompatibility directly as it is the first reaction that happens when a foreign material comes in contact with blood. In this study, the mechanism of albumin adsorption on hydrophilic and hydrophobic surfaces is investigated. Although it is studied extensively and has been of keen interest for decades, the adsorptive nature of albumin is still not fully understood with contradicting reported studies. This problem results from previous works focusing on mostly qualitative and quantitative adsorption properties of albumin, rather than the specific interaction mechanisms. The variable local surface properties across albumin can significantly impact adsorption and must be explored. In this work, the effect of hydration is found to significantly increase adsorption with minor reductions. The adsorption of albumin on hydrophilic or hydrophobic surfaces is dependent on albumin orientation, which is dictated by local charge effects. Based on these findings, an optimized material surface is proposed to minimize albumin adsorption using functional groups to limit surface availability for hydrophobic interactions while inhibiting excess electrostatic effects at hydrophilic sites. The extent of albumin adsorption and shape change are characterized herein using the heat capacity. Current study identifies interaction mechanisms previously missing in literature, which are responsible for inconsistent adsorption results.
Collapse
Affiliation(s)
- Mohammad Moulod
- Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, FL, USA.
| | - Saeed Moghaddam
- Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Bychkova AV, Lopukhova MV, Wasserman LA, Degtyarev YN, Kovarski AL, Chakraborti S, Mitkevich VA. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles. Int J Biol Macromol 2022; 194:654-665. [PMID: 34813783 DOI: 10.1016/j.ijbiomac.2021.11.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is a very well-characterized protein, which has already been used for many biocompatible coatings. We hypothesized binding between HSA and magnetic iron oxide nanoparticles (MNPs) as well as HSA coating stability to be pH- and ionic strength-dependent. The impact of phosphate buffer on protein coating was studied at varying pH (6.0, 6.6, and 7.5) and ionic strengths (0.15 and 0.30 M NaCl) using different physicochemical methods. In addition, the stability of HSA coatings on MNPs was studied by means of UV/visible spectrophotometry, dynamic light scattering, and electron magnetic resonance. We used differential scanning calorimetry (DSC) to determine the differences in the change of enthalpies and denaturation temperatures of HSA in various buffer conditions and on the surface of the particles. The binding thermodynamics of HSA and MNPs were determined by isothermal titration calorimetry (ITC), and it was also dependent on pH and ionic strength. The stability of adsorbed layer on MNPs decreases with increasing pH [from weakly acidic (pH 6.0-6.6) to slightly alkaline (pH 7.5)], as well as with an increase of ionic strength. This study develops stable HSA coating on MNPs which might be applied to a wide range of biomedical applications.
Collapse
Affiliation(s)
- Anna V Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia.
| | - Mariia V Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Luybov A Wasserman
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Yevgeniy N Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia; N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, 119991 Moscow, Russia
| | - Alexander L Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | | | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str., 32, 119991 Moscow, Russia
| |
Collapse
|
10
|
Basu A, Bhowmick S, Mukherjee A. Flavonolignan silibinin abrogates SDS induced fibrillation of human serum albumin. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Prasanthan P, Kishore N. Unusual human serum albumin fibrillation inhibition by ketoprofen and fenoprofen: Mechanistic insights. J Mol Recognit 2021; 34:e2937. [PMID: 34505308 DOI: 10.1002/jmr.2937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/07/2022]
Abstract
Development of efficient therapeutic strategies to combat protein misfolding and fibrillation is of great clinical significance. In the current study, efforts have been made to obtain qualitative and quantitative insights into interactions of anti-inflammatory drugs; ketoprofen and fenoprofen with the transport protein HSA and their inhibitory action on fibrillation by employing a combination of calorimetric, spectroscopic, microscopic, and molecular docking methods. Interestingly, both ketoprofen and fenoprofen are able to completely inhibit fibrillation of HSA when added at a concentration of 0.5 mM for fenoprofen or 1 mM ketoprofen. Further, no amorphous aggregates are formed. Isothermal titration calorimetric studies highlight the predominant role of polar interactions of these drugs with protein in prevention of fibrillation. The role of conformational flexibility of benzoyl and phenoxy groups of drugs has been correlated with inhibition efficiency. Such studies highlight the role of functionality required for an inhibitor in addressing neurodegenerative diseases.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
12
|
Das S, Langbang L, Haque M, Belwal VK, Aguan K, Singha Roy A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J Pharm Anal 2021; 11:422-434. [PMID: 34513118 PMCID: PMC8424387 DOI: 10.1016/j.jpha.2020.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (-)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (K b) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M-1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The -OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Leader Langbang
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Vinay Kumar Belwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| |
Collapse
|
13
|
Judy E, Kishore N. Discrepancies in Thermodynamic Information Obtained from Calorimetry and Spectroscopy in Ligand Binding Reactions: Implications on Correct Analysis in Systems of Biological Importance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| |
Collapse
|
14
|
Sharma A, Ghosh KS. Studies on Molecular Interactions between Bovine β-Lactoglobulin and Silver Nanoparticles. Protein Pept Lett 2021; 27:793-800. [PMID: 32003652 DOI: 10.2174/0929866527666200129123018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Silver Nanoparticles (AgNPs) were found to modulate the fibrillation of Bovine Β-Lactoglobulin (BLG). OBJECTIVE To gain an insight regarding the mechanism of BLG aggregation modulation by AgNPs at molecular level, studies on the interactions between BLG and AgNPs were carried out. METHODS Protein-ligand interactions were studied based on Trp fluorescence quenching (at four different temperatures), synchronous and three-dimensional fluorescence and circular dichroism spectroscopy (far-UV and near-UV). RESULTS Protein-nanoparticles association constant was in the range of 106 -1010 M-1 and the quenching constant was determined as ~107 M-1. Ground state complexation between the protein and nanoparticles was predicted. Change in polarity surrounding the Trp residue was not detected by synchronous and three-dimensional fluorescence spectroscopy. AgNPs caused a global change in the secondary and tertiary structure of the protein as revealed from far-UV and near-UV CD spectroscopy. Enthalpy driven complexation between the protein and nanoparticles indicates the involvement of hydrogen bonding and/or van der Waals interactions. CONCLUSION Modulation of BLG aggregation by AgNPs is due to strong binding of the nanoparticles with BLG, which also causes structural perturbations of the protein.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| |
Collapse
|
15
|
Holubová M, Štěpánek P, Hrubý M. Polymer materials as promoters/inhibitors of amyloid fibril formation. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Huma ZE, Javed I, Zhang Z, Bilal H, Sun Y, Hussain SZ, Davis TP, Otzen DE, Landersdorfer CB, Ding F, Hussain I, Ke PC. Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906674. [PMID: 31984626 PMCID: PMC7260094 DOI: 10.1002/smll.201906674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/25/2019] [Indexed: 05/19/2023]
Abstract
Multidrug resistance of bacteria is a major challenge due to the wide-spread use of antibiotics. While a range of strategies have been developed in recent years, suppression of bacterial activity and virulence via their network of extracellular amyloid has rarely been explored, especially with nanomaterials. Here, silver nanoparticles and nanoclusters (AgNPs and AgNCs) capped with cationic branched polyethylenimine polymer are synthesized, and their antimicrobial potentials are determined at concentrations safe to mammalian cells. Compared with the ultrasmall AgNCs, AgNPs entail stronger binding to suppress the fibrillization of FapC, a major protein constituent of the extracellular amyloid matrix of Pseudomonas aeruginosa. Both types of nanoparticles exhibit concentration-dependent antibiofilm and antimicrobial properties against P. aeruginosa. At concentrations of 1 × 10-6 m or below, both the bactericidal activity of AgNCs and the antibiofilm capacity of AgNPs are associated with their structure-mediated bio-nano interactions but not ion release. For AgNPs, specifically, their antibiofilm potency correlates with their capacity of FapC fibrillization inhibition, but not with their bactericidal activity. This study demonstrates the antimicrobial potential of safe nanotechnology through the novel route of amyloidosis inhibition.
Collapse
Affiliation(s)
- Zil-E Huma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
- Department of Physics, Faculty of Science, Ningbo University, Ningbo, 315211, China
| | - Syed Zajif Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, 8000, Aarhus C, Denmark
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering (SBASSE), Lahore University of Management Science (LUMS), DHA, Lahore, 54792, Pakistan
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
17
|
Singla R, Abidi SMS, Dar AI, Acharya A. Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic-Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose. ACS OMEGA 2019; 4:14805-14819. [PMID: 31552320 PMCID: PMC6751540 DOI: 10.1021/acsomega.9b01392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Syed M. S. Abidi
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aqib Iqbal Dar
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amitabha Acharya
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
18
|
Furkan M, Sidddiqi MK, Khan AN, Khan RH. An antibiotic (sulfamethoxazole) stabilizes polypeptide (human serum albumin) even under extreme condition (elevated temperature). Int J Biol Macromol 2019; 135:337-343. [DOI: 10.1016/j.ijbiomac.2019.05.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
|
19
|
Ahmed F, Husain Q. Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition. Biochimie 2019; 162:66-76. [DOI: 10.1016/j.biochi.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022]
|
20
|
Falahati M, Attar F, Sharifi M, Haertlé T, Berret JF, Khan RH, Saboury AA. A health concern regarding the protein corona, aggregation and disaggregation. Biochim Biophys Acta Gen Subj 2019; 1863:971-991. [PMID: 30802594 PMCID: PMC7115795 DOI: 10.1016/j.bbagen.2019.02.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/23/2018] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
Abstract
Nanoparticle (NP)-protein complexes exhibit the "correct identity" of NP in biological media. Therefore, protein-NP interactions should be closely explored to understand and modulate the nature of NPs in medical implementations. This review focuses mainly on the physicochemical parameters such as dimension, surface chemistry, morphology of NPs, and influence of pH on the formation of protein corona and conformational changes of adsorbed proteins by different kinds of techniques. Also, the impact of protein corona on the colloidal stability of NPs is discussed. Uncontrolled protein attachment on NPs may bring unwanted impacts such as protein denaturation and aggregation. In contrast, controlled protein adsorption by optimal concentration, size, pH, and surface modification of NPs may result in potential implementation of NPs as therapeutic agents especially for disaggregation of amyloid fibrils. Also, the effect of NPs-protein corona on reducing the cytotoxicity and clinical implications such as drug delivery, cancer therapy, imaging and diagnosis will be discussed. Validated correlative physicochemical parameters for NP-protein corona formation frequently derived from protein corona fingerprints of NPs which are more valid than the parameters obtained only on the base of NP features. This review may provide useful information regarding the potency as well as the adverse effects of NPs to predict their behavior in vivo.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, TehranMedical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, TehranMedical Sciences, Islamic Azad University, Tehran, Iran
| | - Thomas Haertlé
- UR1268, Biopolymers Interactions Assemblies, INRA, BP 71627, 44316 Nantes Cedex 3, France; Poznan University of Life Sciences, Department of Animal Nutrition and Feed Management, ul.Wołyńska 33, 60-637 Poznań, Poland; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jean-François Berret
- Matière etSystèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et LéonieDuquet, F-75205 Paris, France
| | - Rizwan Hasan Khan
- Molecular Biophysics and Biophysical Chemistry Group, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Ning J, Zhang J, Suo T, Yin Z. Spectroscopic studies of human serum albumin exposed to Fe 3 O 4 magnetic nanoparticles coated with sodium oleate: Secondary and tertiary structure, fibrillation, and important functional properties. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Bihani O, Rai T, Panda D. Interaction of proteins with lemon-juice/glutathione-derived carbon nanodot: Interplay of induced-aggregation and co-solubilization. Int J Biol Macromol 2018; 112:1234-1240. [PMID: 29427683 DOI: 10.1016/j.ijbiomac.2018.01.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
The accumulation of protein aggregates (tau) causes Alzheimer's disease (AD), Parkinson's disease (PD), and a range of neurodegenerative diseases. To develop a less toxic and bio-derived nanomaterials for inhibition of protein-aggregation, carbon nanodot has been used for this study. Nanodot have generated huge interest in biomedical applications owing to unique emission property and good biocompatibility. A carbon nanodot is synthesized from a natural resource-lemon juice and glutathione. The synthesized nanodot possesses excitation-independent emission and nano-sheet like with high graphitic content. Interaction of protein with CND is monitored by intrinsic fluorescence (trp residues), FT-IR and circular dichroism spectroscopy. Whereas it solubilizes the protein aggregates at its higher concentration. Both induced-aggregation and co-solubilization are sequence-independent and dictated by nanodot. The study may shed light on the role of glutathione in glutathione-dependent glyoxalase system toward defence against glycation product.
Collapse
Affiliation(s)
- Omkar Bihani
- Rajiv Gandhi Institute of Petroleum Technology, (An Institute of National Importance), Jais, Uttar Pradesh, India
| | - Tripti Rai
- Rajiv Gandhi Institute of Petroleum Technology, (An Institute of National Importance), Jais, Uttar Pradesh, India
| | - Debashis Panda
- Rajiv Gandhi Institute of Petroleum Technology, (An Institute of National Importance), Jais, Uttar Pradesh, India.
| |
Collapse
|
23
|
Basu A, Bhattacharya SC, Kumar GS. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. Int J Biol Macromol 2018; 107:2643-2649. [DOI: 10.1016/j.ijbiomac.2017.10.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
|
24
|
Basu A, Bhayye S, Kundu S, Das A, Mukherjee A. Andrographolide inhibits human serum albumin fibril formations through site-specific molecular interactions. RSC Adv 2018; 8:30717-30724. [PMID: 35548768 PMCID: PMC9085492 DOI: 10.1039/c8ra04637a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/03/2018] [Indexed: 01/13/2023] Open
Abstract
Protein misfolding and fibrillation are the fundamental traits in degenerative diseases like Alzheimer's, Parkinsonism, and diabetes mellitus. Bioactives such as flavonoids and terpenoids from plant sources are known to express protective effects against an array of diseases including diabetes, Alzheimer's and obesity. Andrographolide (AG), a labdane diterpenoid is prescribed widely in the Indian and Chinese health care systems for classical efficacy against a number of degenerative diseases. This work presents an in depth study on the effects of AG on protein fibrillating pathophysiology. Thioflavin T fluorescence spectroscopy and DLS results indicated concentration dependent inhibition of human serum albumin (HSA) fibrillation. The results were confirmed by electron microscopy studies. HSA fibril formations were markedly reduced in the presence of AG. Fluorescence studies and UV-Vis experiments confirmed further that AG molecularly interacts with HSA at site. In silico molecular docking studies revealed hydrogen bonding and hydrophobic interactions with HSA in the native state. Thus AG interacts with HSA, stabilizes the native protein structure and inhibits fibrillation. The results demonstrated that the compound possesses anti-amyloidogenic properties and can be promising against some human degenerative diseases. Andrographolide inhibited HSA protein fibrillation through site specific interactions.![]()
Collapse
Affiliation(s)
- Aalok Basu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sagar Bhayye
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sonia Kundu
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Aatryee Das
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology
- Department of Chemical Technology
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
25
|
Konar S, Sen S, Pathak A. Morphological Effects of CuO Nanostructures on Fibrillation of Human Serum Albumin. J Phys Chem B 2017; 121:11437-11448. [PMID: 29202580 DOI: 10.1021/acs.jpcb.7b08432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of different morphologies of nanostructures on amyloid fibrillation has been investigated by monitoring the fibrillation of human serum albumin (HSA) in the presence of rod-, sphere-, flower-, and star-shaped copper oxide (CuO) nanostructures. The different morphologies of CuO have been synthesized from an aqueous solution-based precipitation method using various organic acids, viz., acetic acid, citric acid, and tartaric acid. The fibrillation process of HSA has been examined using various biophysical techniques, e.g., Thioflavin T fluorescence, Congo red binding studies through UV spectroscopy, circular dichroism spectroscopy, and fluorescence microscopy. The monolayer protein coverage on the CuO nanostructures has been established through DLS studies, and the well-fitted Langmuir isotherm model has been used to interpret the differential adsorption behavior of HSA molecules on the CuO nanostructures. The nanostar-shaped CuO, by virtue of their higher specific surface area (94.45 m2 g-1), presence of high indexed facets {211} and high positive surface charge potential (+16.2 mV at pH 7.0) was found to show the highest adsorption of the HSA monomers and thus was more competent to inhibit the formation of HSA fibrils compared to the other nanostructures of CuO.
Collapse
Affiliation(s)
- Suraj Konar
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | - Shubhatam Sen
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| |
Collapse
|
26
|
Guglielmelli A, Rizzuti B, Guzzi R. Stereoselective and domain-specific effects of ibuprofen on the thermal stability of human serum albumin. Eur J Pharm Sci 2017; 112:122-131. [PMID: 29158196 DOI: 10.1016/j.ejps.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022]
Abstract
Ibuprofen is one of the most used anti-inflammatory drugs, and it is transported in the blood by human serum albumin, a major plasmatic protein with a peculiar adaptability in the binding of several different ligands. We have characterized the interaction between albumin and ibuprofen, either in racemic mixture, or in the S(+) and R(-) enantiomeric forms, by using differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, and molecular dynamics simulation. The results show that increasing concentrations of ibuprofen (up to sixfold drug/protein molar ratio) improve the protein resistance to thermal unfolding without altering the secondary structure. Deconvolution of the calorimetric thermal profiles at different albumin/ibuprofen molar ratios demonstrates a selective stability of the protein domains where the binding sites of the drug are localized. At the highest ibuprofen concentration, the melting temperature increased by about 10°C with respect to the drug-free protein, whereas the unfolding enthalpy maintains an almost constant value. Furthermore, the degree of protein stabilization depends upon the chirality of the drug, and the R(-) enantiomer is more effective compared to the S(+) form. The stability is supported by molecular dynamics simulations, showing that ibuprofen maintains a stable coordination in the most favorable binding sites, leading to a more compact protein structure at high temperature. The overall results attest that the binding of ibuprofen determines on albumin a stereoselective and domain-specific stabilization with a predominantly entropic character, contributing to clarify significant aspects of the molecular mechanism of protein/drug interaction.
Collapse
Affiliation(s)
- Alexa Guglielmelli
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Rita Guzzi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
27
|
Patel BK, Dasmandal S, Mahapatra A. Unraveling the binding of phenolphthalein with serum protein and releasing by β-cyclodextrin. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Sen S, Chakraborty M, Goley S, Dasgupta S, DasGupta S. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin. Biophys Chem 2017; 226:23-33. [DOI: 10.1016/j.bpc.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
|
29
|
Prasanth S, Sudarsanakumar C. Elucidating the interaction of l-cysteine-capped selenium nanoparticles and human serum albumin: spectroscopic and thermodynamic analysis. NEW J CHEM 2017. [DOI: 10.1039/c7nj00477j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adsorption of HSA on the surface of Se nanoparticles.
Collapse
Affiliation(s)
- S. Prasanth
- School of Pure and Applied Physics
- Mahatma Gandhi University Kottayam
- Kerala
- India
| | - C. Sudarsanakumar
- School of Pure and Applied Physics
- Mahatma Gandhi University Kottayam
- Kerala
- India
| |
Collapse
|
30
|
Siddiqi MK, Alam P, Chaturvedi SK, Khan RH. Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol 2016; 92:1220-1228. [DOI: 10.1016/j.ijbiomac.2016.08.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 11/30/2022]
|