1
|
Lertna N, Sansawat N, Neramittagapong A, Theerakulpisut S, Neramittagapong S. Optimizing sorbitol double dehydration: A Box-Behnken design approach with commercial sulfonic acid resin. Heliyon 2024; 10:e34791. [PMID: 39148987 PMCID: PMC11324973 DOI: 10.1016/j.heliyon.2024.e34791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
In this study, double dehydration of sorbitol into isosorbide using commercial sulfonic acid resin as a catalyst was carried out under vacuum conditions generated by water ejection. To improve the efficiency and selectivity of the process, optimum reaction conditions prescribed by temperature, catalyst loading, and reaction time were investigated using the Box-Behnken design (BBD) together with Response Surface Methodology (RSM). The results showed that using the water ejection system could increase reaction activity. Statistically, all the reaction parameters were found to significantly affect the double dehydration reaction response, including sorbitol conversion, 1,4-sorbitant yield, and isosorbide yield. Furthermore, accurate predictive equations for all the reaction responses displayed R2 > 95 %, with no significant errors observed. The optimized conditions resulted in the complete conversion of sorbitol with 6.42 % 1,4-sorbitant yield and 67.55 % isosorbide yield. The equations yielded predicted values of the responses with minor variances being lower than 1 % when compared with the experimental values. However, the efficiency of the catalyst decreased steadily over recycling cycle due to reduced active sites and textural properties, likely caused by structural collapse and by-product accumulation. This work contributes to biomass valorization by optimizing the effective process for the production of isosorbide via commercial catalysts under vacuum conditions.
Collapse
Affiliation(s)
- Natthaphong Lertna
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nitchakamol Sansawat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutasinee Neramittagapong
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
2
|
Hu L, Liu K, Guo Y, Feng J, Ding X, Li W, Su X, Gao M, Li Z, Zhang H, Ren Y, Wei T. Oxygen vacancies-rich Cu-W 18O 49 nanorods supported on reduced graphene oxide for electrochemical reduction ofN 2to NH 3. J Colloid Interface Sci 2023; 644:285-294. [PMID: 37120877 DOI: 10.1016/j.jcis.2023.04.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
High-performance nitrogen fixation is severely limited by the efficiency and selectivity of a catalyst of electrochemical nitrogen reduction reaction (NRR) under ambient conditions. Here, the RGO/WOCu (reduced graphene oxide and Cu-doping W18O49) composite catalysts with abundant oxygen vacancies are prepared by the hydrothermal method. The obtained RGO/WOCu achieves an enhanced NRR performance (NH3 yield rate:11.4 μg h-1 mgcat-1, Faradaic efficiency: 4.4%) at -0.6 V (vs. RHE) in 0.1 mol L-1 Na2SO4 solution. Furthermore, the NRR performance of the RGO/WOCu still keeps at 95% after four cycles, demonstrating its excellent stability. The Cu+-doping increases the concentration of oxygen vacancies, which is conducive to the adsorption and activation of N2. Meanwhile, the introduction of RGO further improves the electrical conductivity and reaction kinetics of the RGO/WOCu due to the high specific surface area and conductivity. This work provides a simple and effective method for efficient electrochemical reduction ofN2.
Collapse
Affiliation(s)
- Liangqing Hu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Kening Liu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yanming Guo
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - Xuejiao Ding
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Weixia Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Xiaojiang Su
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Mingming Gao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Zhiyong Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Yueming Ren
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
3
|
Fast and continuous conversion of xylose to furfural in micropacked bed reactors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Deng Q, Zhang Y, Huang Z, Lin Z, Chen T. A comparative study of the activity and stability of SO42−/MxOy (M = Zr, Sn, Ti) for dehydration of sorbitol and glucose. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Brandi F, Al‐Naji M. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System. CHEMSUSCHEM 2022; 15:e202102525. [PMID: 34931452 PMCID: PMC9305242 DOI: 10.1002/cssc.202102525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Indexed: 06/09/2023]
Abstract
Isosorbide is one of the most interesting cellulosic-derived molecules with great potential to be implemented in wide range of products that shaping our daily life. This Review describes the recent developments in the production of isosorbide from sorbitol in batch and continuous-flow systems under hydrothermal conditions using solid acid catalysts. Moreover, the current hurdles and challenges regarding the synthesis of isosorbide from cellulosic biomass in continuous-flow process using solid acid catalysts are summarized, as well as the scaling-up of this process into pilot level, which will lead to an established industrial process with high sustainability metrics.
Collapse
Affiliation(s)
- Francesco Brandi
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Majd Al‐Naji
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
6
|
Synthesis of lignin-carbohydrate complex-based catalyst from Eragrostis tef straw and its catalytic performance in xylose dehydration to furfural. Int J Biol Macromol 2021; 171:10-16. [PMID: 33412194 DOI: 10.1016/j.ijbiomac.2020.12.213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
A new catalyst was successfully prepared by functionalization of the lignin-carbohydrate complex structure in the Eragrostis tef straw via simultaneous carbonization and sulfonation. The physical and chemical properties of the surface of the synthesized catalyst were checked by FTIR and XRD. The FTIR results indicate the prepared catalyst exhibited functional groups such as -SO3H, -COOH, and -OH. The synthesis conditions like the temperature and time of carbonization and sulfonation showed significant effect the amount of the strong acid doped into the carbonized lignin-carbohydrate matrix. The newly prepared catalyst was checked for dehydration of xylose to furfural and revealed of course that it has the potential. The maximum yield of furfural 62.4% was achieved and the catalyst showed excellent reusability for 5 runs without significant loss of catalystic activity. The use of catalysts prepared from Eragrostis tef straw is a green strategy for converting xylose to furfural, as these catalysts are solving the problems associated with the use of mineral acid catalysts.
Collapse
|
7
|
Preparation and catalytic performance of biomass-based solid acid catalyst from Pennisetum sinense for cellulose hydrolysis. Int J Biol Macromol 2020; 165:1149-1155. [PMID: 33038399 DOI: 10.1016/j.ijbiomac.2020.09.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
As a kind of lignocellulosic biomass, Pennisetum sinense (P. sinense) is commonly used as animal feed, fertilizer or papermaking raw materials. Based on the high carbon content and renewability of P. sinense, we explored the possibility and feasibility of using it as catalyst matrix. The catalyst was produced by sulfonation of char obtained from the carbonization of P. sinense at 550 °C. The structure of the catalyst was characterized by SEM, BET, XRD, FT-IR, XPS and TGA, and its catalytic performance for the hydrolysis of cellulose was investigated in detail. The highest acidity of the catalyst was 3.79 mmol/g and the maximum glucose yield of 59.92% was achieved under optimized conditions. The catalyst also showed a promising reusability. The glucose yield was 53.01% after 5 cycles and as high as 55.92% when using the regenerated catalyst.
Collapse
|
8
|
Al-Naji M, Schlaad H, Antonietti M. New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable. Macromol Rapid Commun 2020; 42:e2000485. [PMID: 33205563 DOI: 10.1002/marc.202000485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Indexed: 12/28/2022]
Abstract
This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., α-methylene-γ-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers.
Collapse
Affiliation(s)
- Majd Al-Naji
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Karl-Liebknecht-Straße 24-25, Potsdam, 14476, Germany
| | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Straße 24-25, Potsdam, 14476, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Karl-Liebknecht-Straße 24-25, Potsdam, 14476, Germany
| |
Collapse
|
9
|
Xu C, He J, Zhang W, Cui H, Zhu J, Hu L. Effect of Microstructures on the Acidity and Catalytic Performance for H
2
Ti
3
O
7
Nanomaterials. ChemistrySelect 2020. [DOI: 10.1002/slct.202002739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Congbo Xu
- School of Chemical Engineering Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| | - Jie He
- School of Chemical Engineering Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| | - Wei Zhang
- School of Chemical Engineering Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| | - Hongshan Cui
- School of Earth and Environment Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| | - Jichao Zhu
- School of Earth and Environment Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| | - Lifang Hu
- School of Chemical Engineering Anhui University of Science and Technology Anhui Province Huainan 232001 P. R. China
| |
Collapse
|
10
|
Zhang Y, Chen T, Zhang G, Wang G, Zhang H. Sorbitol Cyclodehydration to Isosorbide Catalyzed by Acidic Carbon Obtained from Reaction By‐Product. ChemistrySelect 2020. [DOI: 10.1002/slct.201904251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Zhang
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu 610041 China
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyUniversity of Chinese Academy of Sciences Beijing 101408 China
| | - Tong Chen
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu 610041 China
| | - Gang Zhang
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu 610041 China
- National Engineering Laboratory for VOCs Pollution Control Material & TechnologyUniversity of Chinese Academy of Sciences Beijing 101408 China
| | - Gongying Wang
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu 610041 China
| | - Hua Zhang
- Chengdu Institute of Organic ChemistryChinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
11
|
Jin L, Li W, Liu Q, Ma L, Hu C, Ogunbiyi AT, Wu M, Zhang Q. High performance of Mo-promoted Ir/SiO 2 catalysts combined with HZSM-5 toward the conversion of cellulose to C 5/C 6 alkanes. BIORESOURCE TECHNOLOGY 2020; 297:122492. [PMID: 31796376 DOI: 10.1016/j.biortech.2019.122492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, the Mo-promoted Ir/SiO2 (Ir-MoOx/SiO2) catalysts combined with the zeolite HZSM-5 were used for the direct conversion of microcrystalline cellulose (MCC) to liquid fuel (C5/C6 alkanes) in n-dodecane/H2O system. A synergistic effect was formed between the partially reduced MoOx species and the Ir particles, which effectively promoted the catalytic activity of Ir/SiO2 catalyst. When the Mo/Ir molar ratio was 0.5, a high yield of C5/C6 alkanes (91.7%) was achieved at 210 ℃ for 12 h. In addition, the main component of C5/C6 alkanes was n-hexane, which was proven to be obtained by the hydrogenolysis of the key intermediate, sorbitol, formed from the hydrolysis and hydrogenation of MCC.
Collapse
Affiliation(s)
- Lele Jin
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qiying Liu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Longlong Ma
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Chao Hu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ajibola T Ogunbiyi
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Mingwei Wu
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Zhang
- Laboratory of Basic Research in Biomass Conversion and Utilization, Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| |
Collapse
|
12
|
Delbecq F, Khodadadi MR, Rodriguez Padron D, Varma R, Len C. Isosorbide: Recent advances in catalytic production. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110648] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Yuan D, Li L, Li F, Wang Y, Wang F, Zhao N, Xiao F. Solvent-Free Production of Isosorbide from Sorbitol Catalyzed by a Polymeric Solid Acid. CHEMSUSCHEM 2019; 12:4986-4995. [PMID: 31475463 DOI: 10.1002/cssc.201901922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/19/2019] [Indexed: 05/12/2023]
Abstract
A series of polymeric solid acid catalysts (PDSF-x) is prepared by grafting strong electron-withdrawing groups (-SO2 CF3 ) on a sulfonic acid-modified polydivinylbenzene (PDS) precursor synthesized hydrothermally. The effect of acid strength on sorbitol dehydration is investigated. The textural properties, acidity, and hydrophobicity are characterized by using Brunauer-Emmett-Teller analysis, elemental analysis, and contact angle tests. The results of FTIR spectroscopy and X-ray photoelectron spectroscopy show that both -SO3 H and -SO2 CF3 are grafted onto the polymer network. We used solid-state 31 P NMR spectroscopy to show that the acid strength of PDSF-x is enhanced significantly compared with that of PDS, especially for PDSF-0.05. As a result, PDSF-0.05 exhibits the highest isosorbide yield up to 80 %, a good turnover frequency of 231.5 h-1 (compared to other catalysts), and excellent cyclic stability, which is attributed to its large specific surface area, appropriate acid strength, hydrophobicity, and stable framework structure. In addition, a plausible reaction pathway and kinetic analysis are proposed.
Collapse
Affiliation(s)
- Danping Yuan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lei Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Feng Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Yanxia Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Feng Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Fukui Xiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| |
Collapse
|
14
|
Wen Z, Yu L, Mai F, Ma Z, Chen H, Li Y. Catalytic Conversion of Microcrystalline Cellulose to Glucose and 5-Hydroxymethylfurfural over a Niobic Acid Catalyst. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Yongdan Li
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
15
|
Effects of Isosorbide Incorporation into Flexible Polyurethane Foams: Reversible Urethane Linkages and Antioxidant Activity. Molecules 2019; 24:molecules24071347. [PMID: 30959785 PMCID: PMC6479515 DOI: 10.3390/molecules24071347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Isosorbide (ISB), a nontoxic bio-based bicyclic diol composed from two fuzed furans, was incorporated into the preparation of flexible polyurethane foams (FPUFs) for use as a cell opener and to impart antioxidant properties to the resulting foam. A novel method for cell opening was designed based on the anticipated reversibility of the urethane linkages formed by ISB with isocyanate. FPUFs containing various amounts of ISB (up to 5 wt%) were successfully prepared without any noticeable deterioration in the appearance and physical properties of the resulting foams. The air permeability of these resulting FPUFs was increased and this could be further improved by thermal treatment at 160 °C. The urethane units based on ISB enabled cell window opening, as anticipated, through the reversible urethane linkage. The ISB-containing FPUFs also demonstrated better antioxidant activity by impeding discoloration. Thus, ISB, a nontoxic, bio-based diol, can be a valuable raw material (or additive) for eco-friendly FPUFs without seriously compromising the physical properties of these FPUFs.
Collapse
|
16
|
Ni W, Li D, Zhao X, Ma W, Kong K, Gu Q, Chen M, Hou Z. Catalytic dehydration of sorbitol and fructose by acid-modified zirconium phosphate. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zhang Y, Li C, Du Z, Chen X, Liang C. Dehydration of sorbitol into isosorbide over silver-exchanged phosphotungstic acid catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
One-pot synthesis of 5-hydroxymethylfurfural from glucose over zirconium doped mesoporous KIT-6. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zhang H, Lu Y, Wang Y, Zhang X, Wang T. d-Glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst. RSC Adv 2018; 8:5608-5613. [PMID: 35542433 PMCID: PMC9078138 DOI: 10.1039/c7ra12490b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/18/2018] [Indexed: 11/22/2022] Open
Abstract
A glucose-based solid acid catalyst (GSA) was synthesized by hydrothermal carbonization and its physicochemical properties were explored by various characterization techniques including IR, TG and SEM. In addition, its catalytic performance towards d-glucosamine formation from the hydrolysis of chitosan was extensively investigated to determine the effects of reaction parameters, such as reaction temperature, time and mass ratio of catalyst and reactants. The experimental results revealed that the yield of targeted product d-glucosamine could reach as high as 98.1% under optimal conditions (temperature: 110 °C; time: 6 h). After six catalytic cycles, no evident deactivation was observed, suggesting the satisfactory stability of the investigated solid acid catalyst. This might provide insight on the development of suitable catalyst systems for d-glucosamine formation to replace homogeneous catalysts. A method for preparing d-glucosamine in aqueous phase by chitosan degradation by a solid acid, which resulted in high yields.![]()
Collapse
Affiliation(s)
- Hongkui Zhang
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116023
- China
| | - Yuting Lu
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116023
- China
| | - Yuanhao Wang
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116023
- China
| | - Xingrong Zhang
- State Key Laboratory of Mineral Processing
- Beijing General Research Institute of Mining and Metallurgy
- Beijing 102600
- China
| | - Tingyu Wang
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215006
- China
| |
Collapse
|
20
|
Laohapornchaiphan J, Smith CB, Smith SM. One-step Preparation of Carbon-based Solid Acid Catalyst from Water Hyacinth Leaves for Esterification of Oleic Acid and Dehydration of Xylose. Chem Asian J 2017; 12:3178-3186. [DOI: 10.1002/asia.201701369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/23/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jutitorn Laohapornchaiphan
- Chemistry Graduate Program; Department of Chemistry; Faculty of Science; Mahidol University; Rama VI Rd, Rajathevi Bangkok 10400 Thailand
| | - Christopher B. Smith
- Faculty of Science; Mahidol University; 999 Phuttamonthon Sai 4 Rd, Salaya Nakhon Pathom 73170 Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials and Department of Chemistry; Faculty of Science; Mahidol University; 999 Phuttamonthon Sai 4 Rd, Salaya Nakhon Pathom 73170 Thailand
| |
Collapse
|
21
|
|
22
|
|
23
|
Zhu Y, Li W, Lu Y, Zhang T, Jameel H, Chang HM, Ma L. Production of furfural from xylose and corn stover catalyzed by a novel porous carbon solid acid in γ-valerolactone. RSC Adv 2017. [DOI: 10.1039/c7ra03995f] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient catalytic system using S-RFC as catalyst was developed to produce furfural from xylose and corn stover in GVL.
Collapse
Affiliation(s)
- Yuanshuai Zhu
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Hefei 230026
- P. R. China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Hefei 230026
- P. R. China
| | - Yijuan Lu
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Hefei 230026
- P. R. China
| | - Tingwei Zhang
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Hefei 230026
- P. R. China
| | - Hasan Jameel
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Hou-min Chang
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Longlong Ma
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- P. R. China
| |
Collapse
|