1
|
Ngassam Tounzoua C, Grignard B, Detrembleur C. Exovinylene Cyclic Carbonates: Multifaceted CO 2 -Based Building Blocks for Modern Chemistry and Polymer Science. Angew Chem Int Ed Engl 2022; 61:e202116066. [PMID: 35266271 DOI: 10.1002/anie.202116066] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Carbon dioxide is a renewable, inexhaustible, and cheap alternative to fossil resources for the production of fine chemicals and plastics. It can notably be converted into exovinylene cyclic carbonates, unique synthons gaining momentum for the preparation of an impressive range of important organic molecules and functional polymers, in reactions proceeding with 100 % atom economy under mild operating conditions in most cases. This Review summarizes the recent advances in their synthesis with particular attention on describing the catalysts needed for their preparation and discussing the unique reactivity of these CO2 -based heterocycles for the construction of diverse organic building blocks and (functional) polymers. We also discuss the challenges and the future perspectives in the field.
Collapse
Affiliation(s)
- Charlène Ngassam Tounzoua
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, 13 allée du 6 août, buiding B6a, 4000, Liège, Belgium
| |
Collapse
|
2
|
Tounzoua CN, Grignard B, Detrembleur C. Exovinylene Cyclic Carbonates: Multifaceted CO2‐Based Building Blocks for Modern Chemistry and Polymer Science. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bruno Grignard
- University of Liege: Universite de Liege Chemistry BELGIUM
| | | |
Collapse
|
3
|
Karanjit S, Tanaka E, Shrestha LK, Nakayama A, Ariga K, Namba K. A heterogeneous bifunctional silica-supported Ag 2O/Im +Cl − catalyst for efficient CO 2 conversion. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00194b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reusable heterogeneous bifunctional silica-supported Ag2O/Im+Cl− catalyst in carboxylative cyclization reaction of propargyl alcohols by the efficient utilization of CO2 under ambient conditions.
Collapse
Affiliation(s)
- Sangita Karanjit
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Emiko Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Osaka 558-8585, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kosuke Namba
- Graduate School of Pharmaceutical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
4
|
Cervantes‐Reyes A, Saxl T, Stein PM, Rudolph M, Rominger F, Asiri AM, Hashmi ASK. Expanded Ring NHC Silver Carboxylate Complexes as Efficient and Reusable Catalysts for the Carboxylative Cyclization of Unsubstituted Propargylic Derivatives. CHEMSUSCHEM 2021; 14:2367-2374. [PMID: 33687152 PMCID: PMC8252382 DOI: 10.1002/cssc.202002822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/28/2021] [Indexed: 06/05/2023]
Abstract
Stabilized by a bulky N-heterocyclic carbene [BP DPr, 1,3-bis(2,6-diisopropylphenyl)-1,3-diazonine-2-ylidene] ligand, new silver carboxylate complexes of the form BP DPrAgO2 C-R (R=Me, Ph) have been synthesized and fully characterized in solution and in the solid state and implemented as sole catalysts (base-, additive-, and, in some cases, solvent-free) in the challenging fixation of carbon dioxide to unsubstituted propargylic derivatives for the synthesis of oxazolidinones and α-methylene cyclic carbonates. Derived from X-ray diffraction studies, the molecular geometry and the concept of buried volume were employed to describe the structural and steric features of these silver complexes. Their stability and efficiency as catalysts have been demonstrated by the synthesis of 29 carboxylation products (72-98 % yield) at low catalyst loadings (0.01-1.5 mol%). Characteristics are high turnover numbers (up to 9400), catalyst recyclability (up to 96 % yield after the 7th cycle with no decomposition of the silver complex), and the possibility to scale-up the reaction.
Collapse
Affiliation(s)
| | - Tobias Saxl
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Philipp M. Stein
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
5
|
Park JI, Jang JY, Ko YJ, Lee SM, Kim HJ, Jang HY, Ko KC, Son SU. Room-Temperature Synthesis of a Hollow Microporous Organic Polymer Bearing Activated Alkyne IR Probes for Nonradical Thiol-yne Click-Based Post-Functionalization. Chem Asian J 2021; 16:1398-1402. [PMID: 33905607 DOI: 10.1002/asia.202100323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Indexed: 11/08/2022]
Abstract
This work shows that hollow microporous organic polymer (H-MOP-A) with activated internal alkynes as IR probes can be prepared by template synthesis based on acyl Sonogashira-Hagihara coupling at room temperature. The H-MOP-A is a versatile platform in the main chain PSM based on nonradical thiol-yne click reaction. Moreover, an IR peak of internal alkynes in the H-MOP-A is very intense and could be utilized in the monitoring of thiol-yne click-based main chain PSM. The functionalized H-MOP-A with carboxylic acids (H-MOP-CA) showed efficient adsorption toward Ag+ ions. The resultant H-MOP-CA-Ag showed excellent performance in the CO2 fixation to α-alkylidene cyclic compounds.
Collapse
Affiliation(s)
- Jong In Park
- Department of chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - June Young Jang
- Department of chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul, 08826, Korea
| | - Sang Moon Lee
- Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon, 34133, Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon, 16499, Korea
| | - Kyoung Chul Ko
- Department of Chemistry Education, Chonnam National University, Gwangju, 61186, Korea
| | - Seung Uk Son
- Department of chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
6
|
Bresciani G, Bortoluzzi M, Ghelarducci C, Marchetti F, Pampaloni G. Synthesis of α-alkylidene cyclic carbonates via CO 2 fixation under ambient conditions promoted by an easily available silver carbamate. NEW J CHEM 2021. [DOI: 10.1039/d0nj05657j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of α-alkylidene cyclic carbonates has been synthesized under mild conditions using silver carbamate Ag(O2CNEt2) in combination with PPh3.
Collapse
Affiliation(s)
- Giulio Bresciani
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
- CIRCC
| | - Marco Bortoluzzi
- CIRCC
- I-70126 Bari
- Italy
- Ca’ Foscari Università di Venezia
- Dipartimento di Scienze Molecolari e Nanosistemi
| | - Claudia Ghelarducci
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
- CIRCC
| | - Guido Pampaloni
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
- CIRCC
| |
Collapse
|
7
|
Johnson C, Dabral S, Rudolf P, Licht U, Hashmi ASK, Schaub T. Liquid‐liquid‐phase Synthesis of
exo
‐Vinylene Carbonates from Primary Propargylic Alcohols: Catalyst Design and Recycling. ChemCatChem 2020. [DOI: 10.1002/cctc.202001551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chloë Johnson
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Saumya Dabral
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Peter Rudolf
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| | - Ulrike Licht
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) Im Neuenheimer Feld 584 69120 Heidelberg Germany
- BASF SE Carl-Bosch-Str.38 67056 Ludwigshafen Germany
| |
Collapse
|
8
|
Li M, Abdolmohammadi S, Hoseininezhad-Namin MS, Behmagham F, Vessally E. Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Bao J, Wu S, Xu X, Huang L, Zhang L, Kim J, Zhou X, Chen Y, Ji H, Huang Z. Tubular metal organic frameworks from the curvature of 2D-honeycombed metal coordination. Dalton Trans 2020; 49:2403-2406. [PMID: 31967140 DOI: 10.1039/c9dt04668b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tubular MOF with adequate active sites is prepared by the bending of metal-coordinated honeycombed frameworks via titration and shows fast catalytic kinetics with lower catalytic loading for CO2 conversion. The TON is observed to be 2300 and the corresponding TOF of up to 173 h-1 is achieved for the first time.
Collapse
Affiliation(s)
- Junhui Bao
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Shanshan Wu
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Xin Xu
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Liping Huang
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Liwei Zhang
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Jehan Kim
- Pohang Accelerator Laboratory, Posttech, Pohang, Gyeongbuk, Korea
| | - Xiantai Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yaju Chen
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Zhegang Huang
- Fine Chemical Industry Research Institute and PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
10
|
Hou SL, Dong J, Zhao B. Formation of CX Bonds in CO 2 Chemical Fixation Catalyzed by Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806163. [PMID: 31216093 DOI: 10.1002/adma.201806163] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Transformation of CO2 based on metal-organic framework (MOF) catalysts is becoming a hot research topic, not only because it will help to reduce greenhouse gas emission, but also because it will allow for the production of valuable chemicals. In addition, a large number of impressive products have been synthesized by utilizing CO2 . In fact, it is the formation of new covalent bonds between CO2 and substrate molecules that successfully result in CO2 solidly inserting into the products, and only four types of new CX bonds, including CH, CC, CN, and CO bonds, are observed in this exploration. An overview of recent progress in constructing CX bonds for CO2 conversion catalyzed by various MOF catalysts is provided. The catalytic mechanism of generating different CX bonds is further discussed according to both structural features of MOFs and the interactions among CO2 , substrates, as well as MOFs. The future opportunities and challenges in this field are also tentatively covered.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Chakraborty D, Shekhar P, Singh HD, Kushwaha R, Vinod CP, Vaidhyanathan R. Ag Nanoparticles Supported on a Resorcinol‐Phenylenediamine‐Based Covalent Organic Framework for Chemical Fixation of CO
2. Chem Asian J 2019; 14:4767-4773. [DOI: 10.1002/asia.201901157] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Debanjan Chakraborty
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Pragalbh Shekhar
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Himan Dev Singh
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - Rinku Kushwaha
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| | - C. P. Vinod
- CSIR-NCL Catalysis and Inorganic Chemistry Division Pune Maharashtra- 411008 India
| | - Ramanathan Vaidhyanathan
- Department of ChemistryIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
- Centre for Energy SceinceIndian Institute of Science Education and Research Pune Maharashtra- 411008 India
| |
Collapse
|
12
|
Dabral S, Bayarmagnai B, Hermsen M, Schießl J, Mormul V, Hashmi ASK, Schaub T. Silver-Catalyzed Carboxylative Cyclization of Primary Propargyl Alcohols with CO2. Org Lett 2019; 21:1422-1425. [DOI: 10.1021/acs.orglett.9b00156] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Saumya Dabral
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, Heidelberg 69120, Germany
| | - Bilguun Bayarmagnai
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, Heidelberg 69120, Germany
| | - Marko Hermsen
- BASF SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Jasmin Schießl
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Verena Mormul
- BASF SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, Heidelberg 69120, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, Heidelberg 69120, Germany
- BASF SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| |
Collapse
|
13
|
Guan P, Qiu J, Zhao Y, Wang H, Li Z, Shi Y, Wang J. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion. Chem Commun (Camb) 2019; 55:12459-12462. [DOI: 10.1039/c9cc05710b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel crystalline azine-linked three-dimensional covalent organic framework was rationally synthesized and exhibited excellent performance in CO2 adsorption and conversion.
Collapse
Affiliation(s)
- Pengxin Guan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| | - Yunlei Shi
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education, School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
| |
Collapse
|
14
|
Yu X, Yang Z, Zhang F, Liu Z, Yang P, Zhang H, Yu B, Zhao Y, Liu Z. A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO2. Chem Commun (Camb) 2019; 55:12475-12478. [DOI: 10.1039/c9cc07043e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rose bengal-functionalized polymer (RB-POP) supported Ag nanoparticles exhibited excellent performance for catalysing carboxylative cyclization of propargyl alcohols with CO2.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Zhenzhen Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Zhenghui Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Peng Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Hongye Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Colloid
- Interface and Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| |
Collapse
|
15
|
Dabral S, Schaub T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801215] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Saumya Dabral
- Catalysis Research Laboratory (CaRLa); Im Neuenheimer Feld 584 69120 Heidelberg Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa); Im Neuenheimer Feld 584 69120 Heidelberg Germany
- BASF SE; Synthesis and Homogeneous Catalysis; Carl-Bosch-Str. 38 67056 Ludwigshafen Germany
| |
Collapse
|
16
|
Shen G, Zhou WJ, Zhang XB, Cao GM, Zhang Z, Ye JH, Liao LL, Li J, Yu DG. Synthesis of tetronic acids from propargylic alcohols and CO 2. Chem Commun (Camb) 2018; 54:5610-5613. [PMID: 29770416 DOI: 10.1039/c8cc03039a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A direct and practical synthesis of important tetronic acids from easily available propargylic alcohols and carbon dioxide is reported for the first time. This transition-metal-free transformation features high atom- and step-economy, mild reaction conditions, good functional group tolerance and high yield. Preliminary mechanistic studies suggest that the reaction proceeds via cyclization to give alkylidene cyclic carbonate, ring-opening and re-cyclization processes.
Collapse
Affiliation(s)
- Guo Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Panwar V, Jain SL. Zinc grafted to magnetic nanostarch for cyclic carbonate synthesis from propargylic alcohols and CO2 at room temperature. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Zhao Y, Tian L, Qiu J, Li Z, Wang H, Cui G, Zhang S, Wang J. Remarkable synergistic effect between copper(I) and ionic liquids for promoting chemical fixation of CO 2. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
|
20
|
Qiu J, Zhao Y, Li Z, Wang H, Fan M, Wang J. Efficient Ionic-Liquid-Promoted Chemical Fixation of CO 2 into α-Alkylidene Cyclic Carbonates. CHEMSUSCHEM 2017; 10:1120-1127. [PMID: 27791343 DOI: 10.1002/cssc.201601129] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/18/2016] [Indexed: 06/06/2023]
Abstract
The efficient conversion of CO2 into value-added chemicals under metal-free conditions is of significant importance from the viewpoint of sustainable chemistry. In this work, ionic liquids (ILs) with different properties were used to promote the reaction between CO2 and propargylic alcohol for the synthesis of α-alkylidene cyclic carbonates. The protic IL 1,8-diazabicyclo-[5.4.0]-7-undecenium 2-methylimidazolide ([DBUH][MIm]) was prepared by simple neutralization of the superbase with a weak proton donor and could efficiently promote the reactions in high yields. After the reactions, the IL was separated from the reaction mixtures by simply adding water, and then reused after drying without an observable decrease in the catalytic activity and selectivity. NMR spectroscopy and detailed density functional theory analysis were used to propose a reaction mechanism. Both the cation and anion of the IL played a key synergistic role in promoting the reaction. These findings may be useful for the rational design of novel metal-free and recyclable routes for the reaction between CO2 and propargylic alcohols.
Collapse
Affiliation(s)
- Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Yuling Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, P.R. China
| |
Collapse
|
21
|
Kindermann N, Jose T, Kleij AW. Synthesis of Carbonates from Alcohols and CO 2. Top Curr Chem (Cham) 2017; 375:15. [PMID: 28101852 DOI: 10.1007/s41061-016-0101-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022]
Abstract
Alcohols are ubiquitous compounds in nature that offer modular building blocks for synthetic chemistry. Here we discuss the most recent development of different classes of alcohols and their coupling chemistry with carbon dioxide as to afford linear and cyclic carbonates, the challenges associated with their formation, and the potential of this chemistry to revive a waste carbon feed stock.
Collapse
Affiliation(s)
- Nicole Kindermann
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Tharun Jose
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- The Barcelona Institute of Science and Technology, Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain. .,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
22
|
Yuan Y, Xie Y, Zeng C, Song D, Chaemchuen S, Chen C, Verpoort F. A simple and robust AgI/KOAc catalytic system for the carboxylative assembly of propargyl alcohols and carbon dioxide at atmospheric pressure. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00696a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, robust and economical AgI/KOAc system was developed for the carboxylative assembly of propargyl alcohols and CO2 under mild conditions applying an unprecedentedly low level of 0.05 mol% Ag loading.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
- School of Materials Science and Engineering
| | - Yu Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Cheng Zeng
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Dandan Song
- School of Materials Science and Engineering
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- PR China
- School of Materials Science and Engineering
| |
Collapse
|