1
|
Shariff S, Kantawala B, Xochitun Gopar Franco W, Dejene Ayele N, Munyangaju I, Esam Alzain F, Nazir A, Wojtara M, Uwishema O. Tailoring epilepsy treatment: personalized micro-physiological systems illuminate individual drug responses. Ann Med Surg (Lond) 2024; 86:3557-3567. [PMID: 38846814 PMCID: PMC11152789 DOI: 10.1097/ms9.0000000000002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/09/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Approximately 50 million people worldwide have epilepsy, with many not achieving seizure freedom. Organ-on-chip technology, which mimics organ-level physiology, could revolutionize drug development for epilepsy by replacing animal models in preclinical studies. The authors' goal is to determine if customized micro-physiological systems can lead to tailored drug treatments for epileptic patients. Materials and methods A comprehensive literature search was conducted utilizing various databases, including PubMed, Ebscohost, Medline, and the National Library of Medicine, using a predetermined search strategy. The authors focused on articles that addressed the role of personalized micro-physiological systems in individual drug responses and articles that discussed different types of epilepsy, diagnosis, and current treatment options. Additionally, articles that explored the components and design considerations of micro-physiological systems were reviewed to identify challenges and opportunities in drug development for challenging epilepsy cases. Results The micro-physiological system offers a more accurate and cost-effective alternative to traditional models for assessing drug effects, toxicities, and disease mechanisms. Nevertheless, designing patient-specific models presents critical considerations, including the integration of analytical biosensors and patient-derived cells, while addressing regulatory, material, and biological complexities. Material selection, standardization, integration of vascular systems, cost efficiency, real-time monitoring, and ethical considerations are also crucial to the successful use of this technology in drug development. Conclusion The future of organ-on-chip technology holds great promise, with the potential to integrate artificial intelligence and machine learning for personalized treatment of epileptic patients.
Collapse
Affiliation(s)
- Sanobar Shariff
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - Burhan Kantawala
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Yerevan State Medical University, Yerevan, Armenia
| | - William Xochitun Gopar Franco
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- University of Guadalajara, Guadalajara, Mexico
| | - Nitsuh Dejene Ayele
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Internal Medicine, Faculty of Medicine, Wolkite University, Wolkite, Ethiopia
| | - Isabelle Munyangaju
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- College of Medicine and General Surgery, Sudan University Of Science and Technology, Khartoum, Sudan
| | - Fatima Esam Alzain
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- College of Medicine and General Surgery, Sudan University Of Science and Technology, Khartoum, Sudan
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Madga Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, NY
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
2
|
Hou C, Gu Y, Yuan W, Zhang W, Xiu X, Lin J, Gao Y, Liu P, Chen X, Song L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater Today Bio 2023; 19:100553. [PMID: 36747584 PMCID: PMC9898763 DOI: 10.1016/j.mtbio.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The urinary system, comprising the kidneys, ureters, bladder, and urethra, has a unique mechanical and fluid microenvironment, which is essential to the urinary system growth and development. Microfluidic models, based on micromachining and tissue engineering technology, can integrate pathophysiological characteristics, maintain cell-cell and cell-extracellular matrix interactions, and accurately simulate the vital characteristics of human tissue microenvironments. Additionally, these models facilitate improved visualization and integration and meet the requirements of the laminar flow environment of the urinary system. However, several challenges continue to impede the development of a tissue microenvironment with controllable conditions closely resemble physiological conditions. In this review, we describe the biochemical and physical microenvironment of the urinary system and explore the feasibility of microfluidic technology in simulating the urinary microenvironment and pathophysiological characteristics in vitro. Moreover, we summarize the current research progress on adapting microfluidic chips for constructing the urinary microenvironment. Finally, we discuss the current challenges and suggest directions for future development and application of microfluidic technology in constructing the urinary microenvironment in vitro.
Collapse
Affiliation(s)
- Changhao Hou
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wukai Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianjie Xiu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jiahao Lin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yue Gao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peichuan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujie Song
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| |
Collapse
|
3
|
Biocompatibility-on-a-chip: Characterization and evaluation of decellularized tendon extracellular matrix (tdECM) hydrogel for 3D stem cell culture in a microfluidic device. Int J Biol Macromol 2022; 213:768-779. [PMID: 35688274 DOI: 10.1016/j.ijbiomac.2022.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023]
Abstract
Researchers have always tried expensive in vitro tests to show the 3D usability of dECM. The use of tissue-specific hydrogels in a microfluidic device is rarely studied. In this study, we have used ECM obtained from goat digital flexor tendons by decellularization technique. The tdECM was characterized for its structural properties using Scanning Electron Microscopy (SEM). Collagen, dsDNA, GAGs, and protein contents were quantified using spectrophotometric assays. The cell viability and proliferation of human umbilical cord-derived mesenchymal stem cells (hUMSCs) encapsulated in the tdECM hydrogel inside the microfluidic device were checked using Calcein-AM/PI. The FTIR data showed prominent peaks of the amide group, indicating the presence of collagen. The SEM data showed intact fiber morphology after the decellularization process. There was a 95 % reduction in double-stranded DNA (dsDNA) content, proving the effectiveness of the decellularization technique. There was no significant difference in the collagen content of tdECM and the GAGs were also in the acceptable range compared to the native tissue. Over 90 % cell viability in hUMSCs was observed qualitatively and quantitatively in vitro and inside a microfluidic device. In conclusion, we characterized the tdECM hydrogel and demonstrated its compatibility with the microfluidic device.
Collapse
|
4
|
Kim D, Hwang KS, Seo EU, Seo S, Lee BC, Choi N, Choi J, Kim HN. Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Adv Healthc Mater 2022; 11:e2102581. [PMID: 35286780 PMCID: PMC11468795 DOI: 10.1002/adhm.202102581] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment (TME) is the environment around the tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix (ECM). Owing to its component interactions, the TME influences tumor growth and drug delivery in a highly complex manner. Although several vascularized cancer models are developed to mimic the TME in vitro, these models cannot comprehensively reflect blood vessel-tumor spheroid interactions. Here, a method for inducing controlled tumor angiogenesis by engineering the microenvironment is presented. The interstitial flow direction regulates the direction of capillary sprouting, showing that angiogenesis occurs in the opposite direction of flow, while the existence of lung fibroblasts affects the continuity and lumen formation of sprouted capillaries. The vascularized tumor model shows enhanced delivery of anticancer drugs and immune cells to the tumor spheroids because of the perfusable vascular networks. The possibility of capillary embolism using anticancer drug-conjugated liquid metal nanoparticles is investigated using the vascularized tumor model. This vascularized tumor platform can aid in the development of effective anticancer drugs and cancer immunotherapy.
Collapse
Affiliation(s)
- Dasom Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Eun U Seo
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Suyeong Seo
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Byung Chul Lee
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jonghoon Choi
- School of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
5
|
Nakamura T, Harashima H. Dawn of lipid nanoparticles in lymph node targeting: Potential in cancer immunotherapy. Adv Drug Deliv Rev 2020; 167:78-88. [PMID: 32512027 DOI: 10.1016/j.addr.2020.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
It is generally known that the lymph nodes (LNs) are important tissues in cancer immunotherapy. Therefore, delivering immune functional compounds to LNs is a useful strategy for enhancing cancer immunotherapy. Lipid-based nanocarriers have been widely used as delivery systems that target LNs, but lipid nanoparticle (LNP) technology has recently attracted increased interest. High levels of nucleic acids can be efficiently loaded in LNPs, they can be used to actively deliver nucleic acids into the cytoplasm, and they can be produced on an industrial scale. The use of microfluidic devices has been particularly valuable for producing small-sized LNPs, thus paving the way for successful LN targeting. In the review, we focus on the potential of LNP technology for targeting LNs.
Collapse
|
6
|
Suarez-Martinez AD, Sole-Gras M, Dykes SS, Wakefield ZR, Bauer K, Majbour D, Bundy A, Pampo C, Burow ME, Siemann DW, Huang Y, Murfee WL. Bioprinting on Live Tissue for Investigating Cancer Cell Dynamics. Tissue Eng Part A 2020; 27:438-453. [PMID: 33059528 DOI: 10.1089/ten.tea.2020.0190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A challenge in cancer research is the lack of physiologically responsive in vitro models that enable tracking of cancer cells in tissue-like environments. A model that enables real-time investigation of cancer cell migration, fate, and function during angiogenesis does not exist. Current models, such as 2D or 3D in vitro culturing, can contain multiple cell types, but they do not incorporate the complexity of intact microvascular networks. The objective of this study was to establish a tumor microvasculature model by demonstrating the feasibility of bioprinting cancer cells onto excised mouse tissue. Inkjet-printed DiI+ breast cancer cells on mesometrium tissues from C57Bl/6 mice demonstrated cancer cells' motility and proliferation through time-lapse imaging. Colocalization of DAPI+ nuclei confirmed that DiI+ cancer cells remained intact postprinting. Printed DiI+ 4T1 cells also remained viable after printing on Day 0 and after culture on Day 5. Time-lapse imaging over 5 days enabled tracking of cell migration and proliferation. The number of cells and cell area were significantly increased over time. After culture, cancer cell clusters were colocalized with angiogenic microvessels. The number of vascular islands, defined as disconnected endothelial cell segments, was increased for tissues with bioprinted cancer cells, which suggests that the early stages of angiogenesis were influenced by the presence of cancer cells. Bioprinting cathepsin L knockdown 4T1 cancer cells on wild-type tissues or nontarget 4T1 cells on NG2 knockout tissues served to validate the use of the model for probing tumor cell versus microenvironment changes. These results establish the potential for bioprinting cancer cells onto live mouse tissues to investigate cancer microvascular dynamics within a physiologically relevant microenvironment. Impact statement To keep advancing the cancer biology field, tissue engineering has been focusing on developing in vitro tumor biomimetic models that more closely resemble the native microenvironment. We introduce a novel methodology of bioprinting exogenous cancer cells onto mouse tissue that contains multiple cells and systems within native physiology to investigate cancer cell migration and interactions with nearby microvascular networks. This study corroborates the manipulation of different exogenous cells and host microenvironments that impact cancer cell dynamics in a physiologically relevant tissue. Overall, it is a new approach for delineating the effects of the microenvironment on cancer cells and vice versa.
Collapse
Affiliation(s)
- Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Marc Sole-Gras
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Samantha S Dykes
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Zachary R Wakefield
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Kevin Bauer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Dima Majbour
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Angela Bundy
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Christine Pampo
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 2020; 19:9. [PMID: 32050989 PMCID: PMC7017614 DOI: 10.1186/s12938-020-0752-0] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.
Collapse
Affiliation(s)
- Qirui Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Jinfeng Liu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiaohong Wang
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiaoli Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| |
Collapse
|
8
|
Park D, Lee J, Chung JJ, Jung Y, Kim SH. Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends Biotechnol 2019; 38:99-112. [PMID: 31345572 DOI: 10.1016/j.tibtech.2019.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Organs-on-chips (OoCs) have attracted significant attention because they can be designed to mimic in vivo environments. Beyond constructing a single OoC, recent efforts have tried to integrate multiple OoCs to broaden potential applications such as disease modeling and drug discoveries. However, various challenges remain for integrating OoCs towards in vivo-like operation, such as incorporating various connections for integrating multiple OoCs. We review multiplexed OoCs and challenges they face: scaling, vascularization, and innervation. In our opinion, future OoCs will be constructed to have increased predictive power for in vivo phenomena and will ultimately become a mainstream tool for high quality biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Hui J, Pang S. Cell traction force in a confined microenvironment with double-sided micropost arrays. RSC Adv 2019; 9:8575-8584. [PMID: 35518671 PMCID: PMC9061871 DOI: 10.1039/c8ra10170a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) cell migrations are regulated by force interactions between cells and a 3D extracellular matrix (ECM). Mapping the 3D traction force generated by cells on the surrounding ECM with controlled confinement and contact area will be useful in understanding cell migration. In this study, double-sided micropost arrays were fabricated. The cell traction force was mapped by microposts on the top and bottom of opposing surfaces with a controlled separating distance to create different confinements. The density of micropost arrays was modified to investigate the effect of cell contact area on 3D traction force development. Using MC3T3-E1 osteoblastic cells, the leading traction force was found to increase with additional contact surface on the top. Summing force vectors on both surfaces, a large force imbalance was found from the leading to trailing regions for fast migrating cells. With 10 μm separation and densely arranged microposts, the traction force on the top surface was the largest at 28.6 ± 2.5 nN with the highest migration speed of 0.61 ± 0.07 μm min−1. Decreasing the density of the top micropost arrays resulted in a reduced traction force on the top and lower migration speed. With 15 μm separation, the cell traction force on the top and migration speed further decreased simultaneously. These results revealed traction force development on 3D ECM with varied degrees of confinement and contact area, which is important in regulating 3D cell migration. Double-sided micropost arrays to monitor three-dimensional cell traction force development over time on top and bottom surfaces with controlled confinement and contact area.![]()
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| | - Stella W. Pang
- Department of Electronic Engineering
- City University of Hong Kong
- China
- Center for Biosystems, Neuroscience, and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
10
|
Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev 2018; 128:84-100. [PMID: 29567396 DOI: 10.1016/j.addr.2018.03.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Abstract
Lipid-based nanobiomaterials as liposomes and lipid nanoparticles (LNPs) are the most widely used nanocarriers for drug delivery systems (DDSs). Extracellular vesicles (EVs) and exosomes are also expected to be applied as DDS nanocarriers. The performance of nanomedicines relies on their components such as lipids, targeting ligands, encapsulated DNA, encapsulated RNA, and drugs. Recently, the importance of the nanocarrier sizes smaller than 100nm is attracting attention as a means to improve nanomedicine performance. Microfluidics and lab-on-a chip technologies make it possible to produce size-controlled LNPs by a simple continuous flow process and to separate EVs from blood samples by using a surface marker, ligand, or electric charge or by making a mass or particle size discrimination. Here, we overview recent advances in microfluidic devices and techniques for liposomes, LNPs, and EVs and their applications for DDSs.
Collapse
|
11
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
12
|
Vasculature-On-A-Chip for In Vitro Disease Models. Bioengineering (Basel) 2017; 4:bioengineering4010008. [PMID: 28952486 PMCID: PMC5590435 DOI: 10.3390/bioengineering4010008] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Vascularization, the formation of new blood vessels, is an essential biological process. As the vasculature is involved in various fundamental physiological phenomena and closely related to several human diseases, it is imperative that substantial research is conducted on characterizing the vasculature and its related diseases. A significant evolution has been made to describe the vascularization process so that in vitro recapitulation of vascularization is possible. The current microfluidic systems allow elaborative research on the effects of various cues for vascularization, and furthermore, in vitro technologies have a great potential for being applied to the vascular disease models for studying pathological events and developing drug screening platforms. Here, we review methods of fabrication for microfluidic assays and inducing factors for vascularization. We also discuss applications using engineered vasculature such as in vitro vascular disease models, vasculature in organ-on-chips and drug screening platforms.
Collapse
|