1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
3
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
4
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
5
|
Eom S, Kim MH, Yoo R, Choi G, Kang JH, Lee YJ, Choy JH. Dilute lattice doping of 64Cu into 2D-nanoplates: its impact on radio-labeling efficiency and stability for target selective PET imaging. J Mater Chem B 2022; 10:9389-9399. [PMID: 35929536 DOI: 10.1039/d2tb01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quintinite nanoplate (64Cu-QT-NP) isomorphically substituted with 64Cu, as the positron emission tomography (PET) imaging material, was prepared via two-step processes. A 64Cu labeling efficiency of 99% was realized, for the first time, by immobilizing the 64Cu radioisotope directly in the octahedral site of the 2-dimensional (2D) quintinite lattice. Furthermore, the 64Cu labeling stability of 64Cu-QT-NPs was also achieved to be more than ∼99% in various solutions such as saline, phosphate-buffered saline (PBS), and other biological media (mouse and human serums). In an in vivo xenograft mouse model, the passive targeting behavior of 64Cu-QT-NPs into tumor tissue based on the enhanced permeability and retention (EPR) effect was also demonstrated by parenteral administration, and successfully visualized using a PET scanner. For enhancing the tumor tissue selectivity, bovine serum albumin (BSA) was coated on 64Cu-QT-NPs to form 64Cu-QT-NPs/BSA, resulting in better colloidal stability and longer blood circulation time, which was eventually evidenced by the 2-fold higher tumor uptake rate when intravenousely injected in an animal model. It is, therefore, concluded that the present 64Cu-QT-NPs/BSA with tumor tissue selectivity could be an advanced nano-device for radio-imaging and diagnosis as well.
Collapse
Affiliation(s)
- Sairan Eom
- Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.,Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Min Hwan Kim
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ranji Yoo
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Joo Hyun Kang
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Yong Jin Lee
- Division of Applied-RI, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.,International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7977. [PMID: 36431465 PMCID: PMC9694224 DOI: 10.3390/ma15227977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDHs) with two-dimensional nanostructure are inorganic materials that have attractive advantages such as biocompatibility, facile preparation, and high drug loading capacity for therapeutic bioapplications. Since the intercalation chemistry of DNA molecules into the LDH materials were reported, various LDH nanohybrids have been developed for biomedical drug delivery system. For these reasons, LDHs hybridized with numerous therapeutic agents have a significant role in cancer imaging and therapy with targeting functions. In this review, we summarized the recent advances in the preparation of LDH nanohybrids for cancer therapeutic strategies including gene therapy, chemotherapy, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Joonghak Lee
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Gyeonggi, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Gangwondo, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
7
|
Kim TH, Young Lee J, Xie J, Hoon Park J, Oh JM. Topology dependent modification of layered double hydroxide for therapeutic and diagnostic platform. Adv Drug Deliv Rev 2022; 188:114459. [PMID: 35850372 DOI: 10.1016/j.addr.2022.114459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Layered double hydroxide is a family of two-dimensional materials with wide range of compositions. Recently, its ability to accommodate various chemical species and biocompatibility have been attracted in the biomedical applications to develop drug delivery system and nanodiagnostics. In this review, we categorized biomedical approaches of layered double hydroxide with respect to the three topologies of, namely, interlayer space, outer surface with particle edge, and the lattice points. There have been extensive researches on the intercalation of drug or tracing to make use of interlayer space of layered double hydroxide for drug stabilization, sustained release, cellular delivery and etc. Outer surface or edge has been utilized to immobilization of large therapeutic moieties and to attach tracing moiety. Lattice points consisting of various metal species could be utilized for the specific metal species like paramagnetic elements or radioisotopes. Based on these topologies in layered double hydroxide, both the synthetic routes and the achieved functionalities in terms of biomedical application will be discussed.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jun Young Lee
- Accelerator & Radioisotopes Development Laboratory, Korea Atomic Energy Research Institute, Jeongeup 56212, South Korea
| | - Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Jeong Hoon Park
- Accelerator & Radioisotopes Development Laboratory, Korea Atomic Energy Research Institute, Jeongeup 56212, South Korea.
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
8
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
9
|
Choi G, Rejinold NS, Piao H, Choy JH. Inorganic-inorganic nanohybrids for drug delivery, imaging and photo-therapy: recent developments and future scope. Chem Sci 2021; 12:5044-5063. [PMID: 34168768 PMCID: PMC8179608 DOI: 10.1039/d0sc06724e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- College of Science and Technology, Dankook University Cheonan 31116 Republic of Korea
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University Cheonan 31116 Republic of Korea
- Department of Pre-medical Course, College of Medicine, Dankook University Cheonan 31116 Republic of Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
10
|
Homogeneous Incorporation of Gallium into Layered Double Hydroxide Lattice for Potential Radiodiagnostics: Proof-of-Concept. NANOMATERIALS 2020; 11:nano11010044. [PMID: 33375387 PMCID: PMC7824364 DOI: 10.3390/nano11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023]
Abstract
Trivalent gallium ion was successfully incorporated into chemically well-defined MgAl-layered double hydroxide (LDH) frameworks through postsynthetic hydrothermal treatment. Quantitative analysis with inductively coupled plasma-mass spectroscopy exhibited that Ga3+ was first incorporated into LDH through partial dissolution-precipitation at the edge of LDH particle and homogeneously distributed throughout the particle by substitution of Ga3+ for Al3+ in LDH frame works. The powder X-ray diffraction patterns showed that the Ga3+ incorporation did not affect the crystal structure without evolution of unexpected impurities. The morphology and surface property of LDH evaluated by scanning electron microscopy and light scattering showed the preservation of physicochemical properties throughout 24 h of hydrothermal reaction. The distribution of incorporated Ga3+ was visualized with energy dispersive spectroscopy-assisted transmission electron microscopy, suggesting the homogeneous location of Ga3+ in an LDH particle. The X-ray absorption near-edge structure and extended X-ray absorption fine structure suggested that the Ga moiety was immobilized in LDH from 0.5 h and readily crystallized upon reaction time.
Collapse
|
11
|
Choi G, Choy JH. Recent progress in layered double hydroxides as a cancer theranostic nanoplatform. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1679. [PMID: 33140557 DOI: 10.1002/wnan.1679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Layered double hydroxide (LDH) has been a big challenge in exploring new hybrid materials by intercalating inorganic, organic, or bio molecules into their lamellar lattice, those which often showed dual functions from each other or new mutative properties. Recently, nano-bio convergence technology becomes one of the most extensively studied research fields in the view point of developing advanced drugs and diagnostic agents to fight against disease and eventually to improve the lives of human beings. Therefore, LDH as one of the nanomaterials have been intensively investigated not only as biocompatible drug delivery vehicle for cancer chemotherapy but also as diagnostic and imaging agents. In the present review, we have attempted to summarize theranostic functions of drug-LDH hybrid nanoparticles including their synthetic methods, physico-chemical and biological properties, and their unique mechanism overcoming drug resistance, and targeting properties based on in vitro and finally in vivo results. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
12
|
|
13
|
Eom S, Choi G, Nakamura H, Choy JH. 2-Dimensional Nanomaterials with Imaging and Diagnostic Functions for Nanomedicine; A Review. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sairan Eom
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
14
|
Lee JY, Vyas CK, Kim GG, Choi PS, Hur MG, Yang SD, Kong YB, Lee EJ, Park JH. Red Blood Cell Membrane Bioengineered Zr-89 Labelled Hollow Mesoporous Silica Nanosphere for Overcoming Phagocytosis. Sci Rep 2019; 9:7419. [PMID: 31092899 PMCID: PMC6520393 DOI: 10.1038/s41598-019-43969-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/26/2019] [Indexed: 11/15/2022] Open
Abstract
Biomimetic nanoparticles (NPs) have been actively studied for their biological compatibility due to its distinguished abilities viz. long-term circulation, low toxicity, ease for surface modification, and its ability to avoid phagocytosis of NPs by macrophages. Coating the NPs with a variety of cell membranes bearing the immune control proteins increases drug efficacy while complementing the intrinsic advantages of the NPs. In this study, efforts were made to introduce oxophilic radiometal 89Zr with hollow mesoporous silica nanospheres (HMSNs) having abundant silanol groups and were bioengineered with red blood cell membrane (Rm) having cluster of differentiation 47 (CD47) protein to evaluate its long-term in vivo behavior. We were successful in demonstrating the increased in vivo stability of synthesized Rm-camouflaged, 89Zr-labelled HMSNs with the markedly reduced 89Zr release. Rm camouflaged 89Zr-HMSNs effectively accumulated in the tumor by avoiding phagocytosis of macrophages. In addition, re-injecting the Rm isolated using the blood of the same animal helped to overcome the immune barrier. This novel strategy can be applied extensively to identify the long-term in vivo behavior of nano-drugs while enhancing their biocompatibility.
Collapse
Affiliation(s)
- Jun Young Lee
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Chirag K Vyas
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Gun Gyun Kim
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Pyeong Seok Choi
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Min Goo Hur
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Seung Dae Yang
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Young Bae Kong
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Eun Je Lee
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea
| | - Jeong Hoon Park
- Korea Atomic Energy Research Institute, Radiation Instrumentation Division, Jeongeup-si, 56212, Republic of Korea.
| |
Collapse
|
15
|
Choi G, Piao H, Eom S, Choy JH. Vectorized Clay Nanoparticles in Therapy and Diagnosis. CLAYS AND CLAY MINERALS 2019; 67:25-43. [DOI: 10.1007/s42860-019-0009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractOver the past several decades, clay minerals have been applied in various bio-fields such as drug and drug additives, animal medicine and feed additives, cosmetics, biosensors, etc. Among various research areas, however, the medical application of clay minerals is an emerging field not only in academia but also in industry. In particular, cationic and anionic clays have long been considered as drug delivery vehicles for developing advanced drug delivery systems (DDSs), which is the most important of the various research fields including new drugs and medicines, in vitro and in vivo diagnostics, implants, biocompatible materials, etc., in nanomedicine. These applications are obviously related to global issues such as improvements in welfare and quality of life with life expectancy increasing. Many scientists, therefore, in various disciplines, such as clay mineralogy, material chemistry, molecular biology, pharmacology, and medical science, have been endeavoring to find solutions to such global issues. One of the strategic approaches is probably to explore new drugs possessing intrinsic therapeutic effects or to develop advanced materials with theranostic functions. With this is mind, discussions of examples of cationic and anionic clays with bio- and medical applications based on nanomedicine are relevant. In this tutorial review, nanomedicine based on clay minerals are described in terms of synthetic strategies of clay nanohybrids, in vitro and in vivo toxicity, biocompatibility, oral and injectable medications, diagnostics, theranosis, etc.
Collapse
|
16
|
Wang Z, Liang P, He X, Wu B, Liu Q, Xu Z, Wu H, Liu Z, Qian Y, Wang S, Zhu R. Etoposide loaded layered double hydroxide nanoparticles reversing chemoresistance and eradicating human glioma stem cells in vitro and in vivo. NANOSCALE 2018; 10:13106-13121. [PMID: 29961791 DOI: 10.1039/c8nr02708k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glioblastoma (GBM) is the most malignant and lethal glioma in human brain tumors and contains self-renewing, tumorigenic glioma stem cells (GSCs) that contribute to tumor initiation, therapeutic resistance and further recurrence. In this study, we combined in vitro cellular efficacy with in vivo antitumor performance to evaluate the outcome of an etoposide (VP16) loaded layered double hydroxide (LDH) nanocomposite (L-V) on human GSCs. The effects on GSC proliferation and apoptosis showed that loading with LDH could significantly sensitize GSCs to VP16 and enhance the GSC elimination. Further qPCR and western blot assays demonstrated that L-V could effectively attenuate GSC related pluripotency gene expression and reduce the cancer stemness. An in vivo GSC xenograft mice model showed that L-V can overcome drug resistance, eradicate GSCs, sharply decrease the stemness and reverse the epithelial-mesenchymal transition (EMT). RNA-seq analysis elucidated that L-V plays a vital role by down-regulating the PI3K/AKt/mTOR expression and activating the Wnt/GSK3β/β-catenin signaling pathway, hence leading to GSC stemness loss and greatly enhancing the GSC targeting effect. Taken together, this study demonstrated the outstanding performance of L-V reversing the drug resistance of GSCs, thus providing a novel strategy for clinical translation application of nanomedicine in malignant glioma chemotherapy.
Collapse
Affiliation(s)
- Zhaojie Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Choi G, Piao H, Kim MH, Choy JH. Enabling Nanohybrid Drug Discovery through the Soft Chemistry Telescope. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Goeun Choi
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Huiyan Piao
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Myung Hun Kim
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Ho Choy
- Center
for Intelligent Nano-Bio
Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|