1
|
Abbas F, Bousbih R, Ayub AR, Zahid S, Aljohani M, Amin MA, Waqas M, Soliman MS, Khera RA, Jahan N. A Theoretical Investigation for Exploring the Potential Performance of Non-Fullerene Organic Solar Cells Through Side-Chain Engineering Having Diphenylamino Groups to Enhance Photovoltaic Properties. J Fluoresc 2024:10.1007/s10895-024-03805-7. [PMID: 38951306 DOI: 10.1007/s10895-024-03805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
The development of ecofriendly fabrication phenomenon is essential requirement for commercialization of non-fullerene acceptors. Recently, end-capped modeling is employed for computational design of five non-fullerene acceptors to elevate various photovoltaic properties. All new molecules are formulated by altering the peripheral acceptors of CH3-2F and DFT methodology is employed to explore the opto-electronic, morphological and charge transfer analysis. From the computational investigation, all reported molecules manifested red shifted absorption with remarkable reduced band gap. Among investigated molecules, FA1-FA3 evinced effectively decreased value of band gaps and designed molecules have low excitation energy justifying proficient charge transference. The lower values of binding energy of FA1 and FA2 suggest their facile exciton dissociation leading to improved charge mobility. By blending with J61 donor, FA4 have sufficiently enhanced value of VOC (1.72 eV) and fill factor (0.9228). Energy loss of the model (R) is 0.57 eV and statistical calculation demonstrate that all our modified molecules except FA3 has profoundly reduced energy loss compelling in its pivotal utilization. From accessible supportive outcomes of recent investigation, it is recommended that our modified chromophore exhibit remarkable noteworthy applications in solar cells for forthcoming innovations.
Collapse
Affiliation(s)
- Fakhar Abbas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, 21944, Taif, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Majeed M, Waqas M, Aloui Z, Essid M, Ibrahim MAA, Khera RA, Shaban M, Ans M. Exploring the Electronic, Optical, and Charge Transfer Properties of A-D-A-Type IDTV-ThIC-Based Molecules To Enhance Photovoltaic Performance of Organic Solar Cells. ACS OMEGA 2023; 8:45384-45404. [PMID: 38075832 PMCID: PMC10701727 DOI: 10.1021/acsomega.3c04437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/23/2024]
Abstract
Improving the charge mobility and optoelectronic properties of indacenodithiophene-based small molecule acceptors is a key challenge to improving overall efficiency. In this current research, seven newly designed molecules (DT1-DT7) comprising the indacenodithiophene-based core are presented to tune energy levels, enhance charge mobility, and improve the photovoltaic performance of IDTV-ThIC molecules via density functional theory. All the molecules were designed by end-capped modification by substituting terminal acceptors of IDTV-ThIC with strong electron-withdrawing moieties. Among all the examined structures, DT1 has proved itself a superior molecule in multiple aspects, including higher λmax in chloroform (787 nm) and gaseous phase (727 nm), narrow band gap (2.16 eV), higher electron affinity (3.31 eV), least excitation energy (1.57 eV), and improved charge mobility due to low reorganization energy and higher excited state lifetime (2.37 ns) when compared to the reference (IDTV-ThIC) and other molecules. DT5 also showed remarkable improvement in different parameters, such as the lowest exciton binding energy (0.41 eV), leading to easier charge moveability. The improved open-circuit voltage of DT4 and DT5 makes them proficient molecules exhibiting the charge transfer phenomenon. The enlightened outcomes of these molecules can pave a new route to develop efficient organic solar cell devices using these molecules, especially DT1, DT4, and DT5.
Collapse
Affiliation(s)
- Maham Majeed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zouhaier Aloui
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Manel Essid
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Muhammad Ans
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
3
|
Raza A, Mehmood RF, Rashid EU, Nasr S, Yahia IS, Iqbal J, Alatawi NS, Khera RA. Amplifying the photovoltaic properties of phenylene dithiophene core based non-fused ring by engineering the terminal acceptors modification to enhance the efficiency of organic solar cells. J Mol Graph Model 2023; 124:108563. [PMID: 37480831 DOI: 10.1016/j.jmgm.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
In this study, a series of eight non-fused rings-based semiconducting acceptors (AR1-AR8) were computationally developed by making modifications to the parent molecule (PTICO). In this study, a DFT analysis was conducted at an accurately chosen level of theory to gather a comprehensive inventory of the optoelectronic characteristics of AR1-AR8 and PTICO. The findings indicate that all recently developed molecules exhibit a bathochromic shift in their maximum UV-visible absorbance (λmax) with a smaller band gap (Eg). AR1 has demonstrated the most significant red shift in UV-visible absorbance and possesses the smallest Eg when compared to other recently developed acceptors. AR2 acceptor has shown the best results both as electron and hole-transporting materials owing to its smallest value of reorganization energy for electrons and holes. J61 donor was engaged to calculate the open-circuit voltage (VOC) and the highest VOC with maximum FF % value was observed in AR4. The investigation of charge transfer was also conducted utilizing J61 in conjunction with the AR4 acceptor. Natural transition orbitals (NTO) have also been inspected to recognize the percentage electron transport contribution (% ETC) from the ground state to the first excites state (S0 to S1). The findings of this research suggest that the modified acceptors exhibit potential for practical implementation in the development of organic solar cells that possess improved photovoltaic performance.
Collapse
Affiliation(s)
- Ahmad Raza
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan D Research, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Samia Nasr
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - I S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
4
|
Aloufi F, Halawani RF, Jamoussi B, Hajri AK, Zahi N. Quantum Modification of Indacenodithieno[3,2- b]thiophene-Based Non-fullerene Acceptor Molecules for Organic Solar Cells of High Efficiency. ACS OMEGA 2023; 8:21425-21437. [PMID: 37360427 PMCID: PMC10286251 DOI: 10.1021/acsomega.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
In order to enhance the efficacy of organic solar cells, six new three-dimensional small donor molecules (IT-SM1 to IT-SM6) have been computationally designed by modifying the peripheral acceptors of the reference molecule (IT-SMR). The frontier molecular orbitals revealed that IT-SM2 to IT-SM5 had a smaller band gap (Egap) than IT-SMR. They also had smaller excitation energies (Ex) and exhibited a bathochromic shift in their absorption maxima (λmax) when compared to IT-SMR. In both the gas and chloroform phases, IT-SM2 had the largest dipole moment. IT-SM2 also had the best electron mobility, while IT-SM6 had the best hole mobility owing to their smallest reorganization energy for electron (0.1127 eV) and hole (0.0907 eV) mobility, respectively. The analyzed donor molecules' open-circuit voltage (VOC) indicated that all of these proposed molecules had greater VOC and fill factor (FF) values than the IT-SMR molecule. In accordance with the evidence of this work, the altered molecules can seem to be quite proficient for usage by experimentalists and have prospective use in future in the manufacture of organic solar cells with improved photovoltaic properties.
Collapse
Affiliation(s)
- Fahed
A. Aloufi
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riyadh F. Halawani
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Science, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nesrine Zahi
- Applied
College, Huraymila, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
- Thermal
and Energetic Systems Studies Laboratory (LESTE), National Engineering
School of Monastir (ENIM), University of
Monastir, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Rasool A, Basha B, Elmushyakhi A, Hossain I, Rehman AU, Ans M. Tuning the optoelectronic properties of acridine-triphenylamine (ACR-TPA) based novel hole transporting material for high efficiency perovskite and organic solar cell. J Mol Graph Model 2023; 123:108526. [PMID: 37263156 DOI: 10.1016/j.jmgm.2023.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
In this research, five distinct small donor molecules (designated as ACR-TPA-X1, ACR-TPA-X2, ACR-TPA-X3, ACR-TPA-X4, ACR-TPA-X5) are constructed by replacing the methoxy groups on both sides of the model molecule (ACR-TPA-R) with thiophene bridged acceptor moieties. We have used the B3LYP/6-31G (d,p) model for our computational studies. Our model molecule's morphological alteration has resulted in a lowered Eg of 1.77-2.51 eV as compared to model (ACR-TPA-R=3.84 eV). ACR-TPA-X2 investigated the λmax at 776 nm. ACR-TPA-X4 was found to be most miscible with dichloromethane (DCM). The greatest VOC(1.21 eV) was observed in ACR-TPA-X1. Among all of the variants, ACR-TPA-X1 had the highest PCE (23.42%). It was found that ACR-TPA-X4 had the highest electron mobility (0.00370 eV) and ACR-TPA-X5 had the highest hole mobility (0.00324 eV) of all the materials examined. The findings prove the worth of the methods used, paving the way for the development of effective small donors for OSCs and HTMs for PSCs.
Collapse
Affiliation(s)
- Alvina Rasool
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Beriham Basha
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Ismail Hossain
- School of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620000, Russia
| | - Attiq Ur Rehman
- Department of Physics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Hameed S, Waqas M, Zahid S, Gul S, Shawky AM, Alatawi NS, Shehzad RA, Bhatti IA, Ayub K, Iqbal J, Khera RA. Quantum Chemical Approach of Hexaammine (NH 3) 6 complexant with alkali and alkaline earth metals for their potential use as NLO materials. J Mol Graph Model 2023; 123:108505. [PMID: 37220700 DOI: 10.1016/j.jmgm.2023.108505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
In this study, nine new electron rich compounds are presented, and their electronic, geometrical, and nonlinear optical (NLO) characteristics have been investigated by using the Density functional theory. The basic design principle of these compounds is placing alkaline earth metal (AEM) inside and alkali metal (AM) outside the hexaammine complexant. The properties of nine newly designed compounds are contrasted with the reference molecule (Hexaammine). The effect of this doping on Hexaamine complexant is explored by different analyses such as electron density distribution map (EDDM), frontier molecular orbitals (FMOs), density of states (DOS) absorption maximum (λmax), hyperpolarizabilities, dipole moment, transition density matrix (TDM). Non-covalent interaction (NCI) study assisted with isosurfaces has been accomplished to explore the vibrational frequencies and types of synergy. The doping of hexaammine complexant with AM and AEM significantly improved its characteristics by reducing values of HOMO-LUMO energy gaps from 10.7eV to 3.15eV compared to 10.7 eV of hexaammine. The polarizability and hyperpolarizability (αo and βo) values inquisitively increase from 72 to 919 au and 4.31 × 10-31 to 2.00 × 10-27esu respectively. The higher values of hyperpolarizability in comparison to hexaammine (taken as a reference molecule) are credited to the presence of additional electrons. The absorption profile of the newly designed molecules clearly illustrates that they are highly accompanied by higher λmax showing maximum absorbance in red and far-red regions ranging from 654.07 nm to 783.94 nm. These newly designed compounds have superior outcomes having effectiveness for using them as proficient NLO materials and have a gateway for advanced investigation of more stable and highly progressive NLO materials.
Collapse
Affiliation(s)
- Shanza Hameed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSAT University, Abbottabad Campus, KPK, 22060, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Biesen L, Krenzer J, Nirmalananthan-Budau N, Resch-Genger U, Müller TJJ. Asymmetrically bridged aroyl- S, N-ketene acetal-based multichromophores with aggregation-induced tunable emission. Chem Sci 2022; 13:5374-5381. [PMID: 35655556 PMCID: PMC9093196 DOI: 10.1039/d2sc00415a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically bridged aroyl-S,N-ketene acetals and aroyl-S,N-ketene acetal multichromophores can be readily synthesized in consecutive three-, four-, or five-component syntheses in good to excellent yields by several successive Suzuki-couplings of aroyl-S,N-ketene acetals and bis(boronic)acid esters. Different aroyl-S,N-ketene acetals as well as linker molecules yield a library of 23 multichromophores with substitution and linker pattern-tunable emission properties. This allows control of different communication pathways between the chromophores and of aggregation-induced emission (AIE) and energy transfer (ET) properties, providing elaborate aggregation-based fluorescence switches. A library of 23 asymmetrically linked aroyl-S,N-ketene acetal solid-state emissive multichromophores accessed by one-pot multicomponent reactions exhibits AIE- and AIEE-active behavior as well as dual emission and potential energy transfer.![]()
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| | - Julius Krenzer
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| | - Nithiya Nirmalananthan-Budau
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1 Richard-Willstätter-Straße 11 D-12489 Berlin Germany
| | - Ute Resch-Genger
- Division Biophotonics, Bundesanstalt für Materialforschung und -prüfung (BAM), Department 1 Richard-Willstätter-Straße 11 D-12489 Berlin Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 D-40225 Düsseldorf Germany
| |
Collapse
|
8
|
Mahalingavelar P, Kanvah S. α-Cyanostilbene: A Multifunctional Spectral Engineering Motif. Phys Chem Chem Phys 2022; 24:23049-23075. [DOI: 10.1039/d2cp02686d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remarkable photophysical phenomenon of aggregation-induced emission offers excellent strategies to obtain the molecular materials possessing unique spectral signatures such as high fluorescence intensity, excellent quantum yield, large Stokes shift...
Collapse
|
9
|
Jana P, Paramasivam M, Khandelwal S, Dutta A, Kanvah S. Perturbing the AIEE activity of pyridine functionalized α-cyanostilbenes with donor substitutions: an experimental and DFT study. NEW J CHEM 2020. [DOI: 10.1039/c9nj03693h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation propensity of pyridyl functionalized α-cyanostilbenes has been investigated with respect to various amino donors.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- Gandhinagar-382 355
- India
| | | | - Shikha Khandelwal
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- Gandhinagar-382 355
- India
| | - Arnab Dutta
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- Gandhinagar-382 355
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- Gandhinagar-382 355
- India
| |
Collapse
|
10
|
Sivakumar G, Paramasivam M, Bharath D, Rao VJ. Energy level tuning of ‘Z’-shaped small molecular non-fullerene electron acceptors based on a dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6(1H,5H)-dione acceptor unit for organic photovoltaic applications: a joint experimental and DFT investigation on the effect of fluorination. NEW J CHEM 2019. [DOI: 10.1039/c8nj05645e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three dipyrrolo[2,3-b:2′,3′-e]pyrazine-2,6(1H,5H)-dione based small molecule non-fullerene acceptors with various end-capped fluorine units have been investigated.
Collapse
Affiliation(s)
- Gangala Sivakumar
- Fluoro Agro Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Mahalingavelar Paramasivam
- Fluoro Agro Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Catalysis and Fine Chemicals Division
| | - Dyaga Bharath
- Fluoro Agro Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Vaidya Jayathirtha Rao
- Fluoro Agro Chemicals Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- AcSIR
| |
Collapse
|
11
|
González-Antonio O, Navarro Villalobos M, Vázquez-Alvarado MM, Santillan R, Flores-Pérez B, Romero-Ávila M, Farfán N. On the nucleophilic derivatization of 4,7-dibromo-[1,2,5]thiadiazolo[3,4- c]pyridine: basis for biologically interesting species and building blocks for organic materials. NEW J CHEM 2019. [DOI: 10.1039/c9nj01855g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eleven new thiadiazolopyridine-derived building blocks were synthesized through a selective SNAr reaction and the key steps of their reaction mechanism and spectroscopic properties were studied.
Collapse
Affiliation(s)
- Oscar González-Antonio
- Facultad de Química
- Departamento de Química Orgánica
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | | | - María Magdalena Vázquez-Alvarado
- Facultad de Química
- Departamento de Química Orgánica
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | - Rosa Santillan
- Departamento de Química
- Centro de Investigación y de Estudios Avanzados del IPN
- CINVESTAV
- 07000 Ciudad de México
- Mexico
| | - Blas Flores-Pérez
- Facultad de Química
- Departamento de Química Orgánica
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | - Margarita Romero-Ávila
- Facultad de Química
- Departamento de Química Orgánica
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| | - Norberto Farfán
- Facultad de Química
- Departamento de Química Orgánica
- Universidad Nacional Autónoma de México
- Ciudad Universitaria
- 04510 Ciudad de México
| |
Collapse
|
12
|
Kumari B, Paramasivam M, Dutta A, Kanvah S. Emission and Color Tuning of Cyanostilbenes and White Light Emission. ACS OMEGA 2018; 3:17376-17385. [PMID: 31458345 PMCID: PMC6643655 DOI: 10.1021/acsomega.8b02775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 06/10/2023]
Abstract
White-light-emitting diodes are energy efficiency replacement of conventional lighting sources. Herein, we report the luminescent behavior of three simple cyanostilbenes with triphenylamine-donating groups bearing different electron-withdrawing groups (phenyl, pyridyl, and p-nitrophenyl) in a common donor (D)-π-acceptor (A) α-cyanostilbene construct along with their thermal and electrochemical properties. The density functional theory (DFT) studies reveal that aggregation-induced emission characteristic feature of the D-π-A dyes is inversely proportional to the intramolecular charge transfer (ICT) effect, that is, phenyl-and pyridyl-substituted compounds show characteristic aggregation-induced emission in water, whereas the ICT effect is dominant for the nitro derivative. The extent of ICT and the solvatochromic emission shifts, from blue to red, depend on the strength of the electron-withdrawing group. White luminescence and tunable emission colors are obtained by careful admixtures of these cyanostilbenes bearing triphenylamines. The results rationalized through DFT and time-dependent DFT calculations follow a consistent trend with the energy levels measured from the electrochemical and optical studies. Thermogravimetric analysis and differential scanning calorimetry studies showed excellent thermal stability of the compounds. The scanning electron microscopy and dynamic light scattering measurements were performed to reveal the formation of aggregates. This strategy involving synthetically simple and structurally similar molecules with different emission properties has potential applications in the fabrication of multicolor and white-light-emitting materials.
Collapse
Affiliation(s)
- Beena Kumari
- Department of Chemistry, Indian
Institute of Technology Gandhinagar,
Palaj, Gandhinagar 382
355, India
| | | | - Arnab Dutta
- Department of Chemistry, Indian
Institute of Technology Gandhinagar,
Palaj, Gandhinagar 382
355, India
| | - Sriram Kanvah
- Department of Chemistry, Indian
Institute of Technology Gandhinagar,
Palaj, Gandhinagar 382
355, India
| |
Collapse
|
13
|
Paramasivam M, Chitumalla RK, Jang J, Youk JH. The impact of heteroatom substitution on cross-conjugation and its effect on the photovoltaic performance of DSSCs - a computational investigation of linear vs. cross-conjugated anchoring units. Phys Chem Chem Phys 2018; 20:22660-22673. [PMID: 30132478 DOI: 10.1039/c8cp02709a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unusual bonding pattern and proximal heteroatom substitution in π-cross conjugation produced distinct changes in the energy levels and photophysical behaviour of the dyes. To seek an understanding of the origin of these fluctuations, we have carried out a detailed computational investigation on a series of D-π1-π2 (A1)-A2 structured dyes comprised of common donor-spacer (auxiliary acceptor) units but varied the anchoring parts. In this study, we introduced a novel dimethylamino substituted fluorene-based triarylamine donor unit and evaluated its donating strength. Based on the comparison of DFT computed energy levels with experimental results, we have proposed an orbital splitting pattern to explain the energy level and photophysical properties of the linear vs. cross-conjugated dyes with respect to the linking position of the anchoring unit and benzo[1,2,5]thiadiazole (BTD) substitution. The smallest HOMO-LUMO gap of B3 mainly originated from the weak overlap of the directionality mismatch of the orbital interaction imposed by cross-conjugation. The inefficient overlap in B3 can possibly influence the energy levels but failed to enhance the charge transfer transitions upon photoexcitation. On the other hand, β-heteroatom substitution in bridged dyes partially enhanced π-delocalization over the cross conjugation and produced a significant ICT absorption with an optoelectronic response in the NIR region. BTD acceptor substitution increased the HOMO-LUMO gap of the bridged dyes. NBO analysis was performed to corroborate our predictions. DOS-PDOS analysis of the dyes@TiO2 was employed to investigate the electron injection rate of linear vs. bridged dyes. The anchoring pattern and large torsional deviation of the carboxylate anchoring group upon TiO2 adsorption drastically decreased the photovoltaic performance of the bridged dyes. The results obtained from this study provided a detailed understanding of how to surmount the cross-conjugation with the aid of β-heteroatom substitution. These design guidelines would be helpful in developing novel NIR dyes with better hole mobility for various optoelectronic applications. Furthermore, π-delocalization over the cross-conjugation concept opens a new pathway in the field of functional molecular devices to increase the charge conductance over several orders of magnitude with a significant reduction of destructive quantum interference at the molecular junction.
Collapse
|
14
|
Kanth P. C, Patel J, Chauhan M, Aatif M, Sharma A, Trivedi MU, Tripathi B, Tiwari JP, Gupta G, Kumar M, Pandey MK. Photo-induced characteristic study of the smallest fullerene fragment, 1,6,7,10-tetramethylfluoranthene as an acceptor. NEW J CHEM 2017. [DOI: 10.1039/c7nj01229b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the use of the novel 1,6,7,10-tetramethylfluoranthene as an acceptor in the organic solar cell has been demonstrated.
Collapse
|