1
|
Wang K, Liu J, El-Khouly ME, Cui X, Che Q, Zhang B, Chen Y. Water-Soluble Polythiophene-Conjugated Polyelectrolyte-Based Memristors for Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36987-36997. [PMID: 35943132 DOI: 10.1021/acsami.2c04752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key to protect sensitive information stored in electronic memory devices from disclosure is to develop transient electronic devices that are capable of being destroyed quickly in an emergency. By using a highly water-soluble polythiophene-conjugated polyelectrolyte PTT-NMI+Br- as an active material, which was synthesized by the reaction of poly[thiophene-alt-4,4-bis(6-bromohexyl)-4H-cyclopenta(1,2-b:5,4-b')dithiophene] with N-methylimidazole, a flexible electronic device, Al/PTT-NMI+Br-/ITO-coated PET (ITO: indium tin oxide; PET: polyethylene terephthalate), is successfully fabricated. This device shows a typical nonvolatile rewritable resistive random access memory (RRAM) effect at a sweep voltage range of ±3 V and a history-dependent memristive switching performance at a small sweep voltage range of ±1 V. Both the learning/memorizing functions and the synaptic potentiation/depression of biological systems have been emulated. The switching mechanism for the PTT-NMI+Br--based electronic device may be highly associated with ion migration under bias. Once water is added to this device, it will be destructed rapidly within 20 s due to the dissolution of the active layer. This device is not only a typical transient device but can also be used for constructing conventional memristors with long-term stability after electronic packaging. Furthermore, the soluble active layer in the device can be easily recycled from its aqueous solution and reused for fabricating new transient memristors. This work offers a train of new thoughts for designing and constructing a neuromorphic computing system that can be quickly destroyed with water in the near future.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaxuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Xiaosheng Cui
- Shanghai Institute of Space Propulsion, 801 Minhang Wanfang Road, Shanghai 201112, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Wang K, Wang X, El-Khouly ME, Che Q, Zhao Z, Zhang B, Chen Y. Cyanospirobifluorene-based conjugated polyelectrolytes: Synthesis and tunable nonvolatile information storage performance. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Copolyfluorenes containing carbazole or triphenylamine and Diethoxylphosphoryl groups in the side chains as white-light-emitting polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Viologen-bridged polyaniline based multifunctional heterofilms for all-solid-state supercapacitors and memory devices. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Fan F, Zhang B, Cao Y, Yang X, Gu J, Chen Y. Conjugated polymer covalently modified graphene oxide quantum dots for ternary electronic memory devices. NANOSCALE 2017; 9:10610-10618. [PMID: 28726942 DOI: 10.1039/c7nr02809a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Zero dimensional graphene oxide (GO) quantum dots (GOQDs) have been expected to play an important role in the development of new memory materials. When the size of GO was reduced to that of GOQDs, both the electron affinity and ionization potential of GO were found to be decreased, and this was followed by the elevation of lowest energy unoccupied molecular orbital (LUMO) energy level. This implies that the electron withdrawing ability of GOQDs is weaker than that of GO. In this work, a novel arylamine-based polyazomethine covalently functionalized graphene oxide quantum dots (TPAPAM-GOQDs), which was synthesized using an amidation reaction, was for the first time used to fabricate a ternary memory device with a configuration of gold/TPAPAM-GOQDs/indium tin oxide. The current ratio of OFF : ON-1 : ON-2 was found to be 1 : 60 : 3000. Its conductive nature was also revealed using an in situ conductive atomic force microscopy technique. This memory device could potentially increase the memory capacity of the device from the conventional 2n to 3n when compared to binary memory devices.
Collapse
Affiliation(s)
- Fei Fan
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | |
Collapse
|
6
|
Magalhães CET, da Silva MM, Savedra RML, Siqueira MF. Anisotropic electron mobility in fluorene-PPV and fluorene-MEH-PPV. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1265679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Carlos E. T. Magalhães
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Marcio M. da Silva
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Ranylson M. L. Savedra
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Melissa F. Siqueira
- Laboratory of Molecular Simulation of Material, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Laboratory of Polymers and Electronic Properties of Materials, Department of Physics, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|