1
|
Arcudi F, Đorđević L. Supramolecular Chemistry of Carbon-Based Dots Offers Widespread Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300906. [PMID: 37078923 DOI: 10.1002/smll.202300906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Carbon dots are an emerging class of nanomaterials that has recently attracted considerable attention for applications that span from biomedicine to energy. These photoluminescent carbon nanoparticles are defined by characteristic sizes of <10 nm, a carbon-based core and various functional groups at their surface. Although the surface groups are widely used to establish non-covalent bonds (through electrostatic interactions, coordinative bonds, and hydrogen bonds) with various other (bio)molecules and polymers, the carbonaceous core could also establish non-covalent bonds (ππ stacking or hydrophobic interactions) with π-extended or apolar compounds. The surface functional groups, in addition, can be modified by various post-synthetic chemical procedures to fine-tune the supramolecular interactions. Our contribution categorizes and analyzes the interactions that are commonly used to engineer carbon dots-based materials and discusses how they have allowed preparation of functional assemblies and architectures used for sensing, (bio)imaging, therapeutic applications, catalysis, and devices. Using non-covalent interactions as a bottom-up approach to prepare carbon dots-based assemblies and composites can exploit the unique features of supramolecular chemistry, which include adaptability, tunability, and stimuli-responsiveness due to the dynamic nature of the non-covalent interactions. It is expected that focusing on the various supramolecular possibilities will influence the future development of this class of nanomaterials.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
2
|
Li J, Gong X. The Emerging Development of Multicolor Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205099. [PMID: 36328736 DOI: 10.1002/smll.202205099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique electronic and physicochemical properties. The multicolor emission characteristics of carbon dots (CDs) obviously depend on the carbon source precursor, reaction conditions, and reaction environment, which directly or indirectly determines the multicolor emission characteristics of CDs. Therefore, this review is the first systematic classification and summary of multiple regulation methods of synthetic MCDs and reviews the recent research progress in the synthesis of MCDs from a variety of precursor materials such as aromatic molecules, small organic molecules, and natural biomass, focusing on how different regulation methods produce corresponding MCDs. This review also introduces the innovative applications of MCDs in the fields of biological imaging, light-emitting diodes (LEDs), sensing, and anti-counterfeiting due to their excellent PL properties. It is hoped that by selecting appropriate adjustment methods, this review can inspire and guide the future research on the design of tailored MCDs, and provide corresponding help for the development of multifunctional MCDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Ruiz-Medina A, Jiménez-López J, Llorent-Martínez EJ. Luminescent determination of propineb fungicide by using a carbon quantum dots-europium ions system. Talanta 2022; 240:123205. [PMID: 35026641 DOI: 10.1016/j.talanta.2022.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
We propose a modification of lanthanide-sensitized luminescence (LSL) to increase the selectivity and sensitivity of analytical methods based on this detection. LSL consists in the formation of complexes of lanthanide ions and organic compounds. Then, an intramolecular energy transfer occurs from the excited state of the ligand (organic analyte) to the emitting level of the lanthanide. The utilization of luminescent nanoparticles (carbon quantum dots, CQDs) in LSL systems can enhance their sensitivity and selectivity. CQDs can react with lanthanide ions through their carboxylic groups. These systems can thus be used as time-resolved luminescent probes. Propineb (PPN), a well-known dithiocarbamate fungicide, has been selected as the target analyte to show the advantages of using CQDs in LSL systems. The method proposed is based on the quenching produced by PPN in europium-CQDs luminescence, obtaining a detection limit of 0.03 μg mL-1 PPN and a method detection limit of 3 mg kg-1 in capers (bud and fruit), fulfilling the maximum residue limit in these samples (25 mg kg-1). The results showed that the use of nanoparticles in LSL systems may provide novel and simple analytical methods for the screening of contaminants in the agri-food sector.
Collapse
Affiliation(s)
- A Ruiz-Medina
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain.
| | - J Jiménez-López
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain
| | - E J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071, Jaén, Spain
| |
Collapse
|
4
|
Li Y, Wang YQ, Liu D, Gao Y, Wang SN, Qiu H. Dual-Emission Ratiometric Fluorescent Probe Based on Lanthanide-Functionalized Carbon Quantum Dots for White Light Emission and Chemical Sensing. ACS OMEGA 2021; 6:14629-14638. [PMID: 34124486 PMCID: PMC8190926 DOI: 10.1021/acsomega.1c01745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)3/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)3/Tb(TFA)3 under different wavelengths. More significantly, FCQDs-Tb(TFA)3 was selected as a sensitive probe for sensing metal cations due to excellent photoluminescence properties, revealing a unique capability of FCQDs-Tb(TFA)3 of detecting Fe(III) cations with high efficiency and selectivity. Furthermore, the sensing experiment results indicated that FCQDs-Tb(TFA)3 is ideal as a fluorescent nanoprobe for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.158 μM, which is superior to many other previous related research studies. This pioneering work provides a new idea and method for constructing a dual-emission ratio sensor based on carbon quantum dots and also extends the potential application in the biological and environmental fields.
Collapse
|
5
|
Zhang Y, Zhu X, Zhang Y. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS NANO 2021; 15:3709-3735. [PMID: 33689307 DOI: 10.1021/acsnano.0c09231] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Upconversion nanoparticles (UCNPs) represent a class of optical nanomaterials that can convert low-energy excitation photons to high-energy fluorescence emissions. On the basis of UCNPs, heterostructured UCNPs, consisting of UCNPs and other functional counterparts (metals, semiconductors, polymers, etc.), present an intriguing system in which the physicochemical properties are largely influenced by the entire assembled particle and also by the morphology, dimension, and composition of each individual component. As multicomponent nanomaterials, heterostructured UCNPs can overcome challenges associated with a single component and exhibit bifunctional or multifunctional properties, which can further expand their applications in bioimaging, biodetection, and phototherapy. In this review, we provide a summary of recent achievements in the field of heterostructured UCNPs in the aspects of construction strategies, synthetic approaches, and types of heterostructured UCNPs. This review also summarizes the trends in biomedical applications of heterostructured UCNPs and discusses the challenges and potential solutions in this field.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|
6
|
Li M, Wang C, Wang D, Li J. Structure-Dependent Photoluminescence of Europium(III) Coordination Oligomeric Silsesquioxane: Synthesis and Mechanism. ACS OMEGA 2021; 6:227-238. [PMID: 33458475 PMCID: PMC7807471 DOI: 10.1021/acsomega.0c04365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/18/2020] [Indexed: 05/08/2023]
Abstract
The coordination environment of Eu3+ is a crucial factor in the optical performance of the complex. Herein, a new kind of oligomeric silsesquioxane was employed to improve the coordination environment of central ions, the luminescence intensity of which was greatly enhanced with an efficient emission peak at 619 nm. More importantly, the photoluminescent properties of the product will be altered because of the formation of the Si-O-Si structure. The relevant mechanism has also been investigated and proposed by a series of characterization analyses. Additionally, the fluorescence lifetime, intrinsic quantum yield, and energy transfer efficiency were calculated. In addition, the observed trend of Judd-Ofelt intensity parameters was used to justify the coordination environment of Eu3+ ions. The experimental results reveal that the sol-gel reaction of the ligands can effectively promote intramolecular energy transfer. In addition, we introduced four theory modules of ligands (LSi, LSi-1, LSi-2, and LSi-3) with certain rules of formation of Si-O-Si, and density functional theory (DFT) and time-dependent DFT (TD-DFT) were used to explore their excited electron transfer process and their electronic absorption spectra, combined with Marcus theory. The calculated results show that the sol-gel reaction will induce the separation of the distribution of excited holes and electrons, leading to an efficient charge-transfer (CT) process. The predictable results were in good accordance with the experimental findings. Consequently, the sol-gel reaction occurring among ligands will be attributed to an efficient CT process, leading to a strong luminescence intensity, as observed experimentally.
Collapse
Affiliation(s)
- Ming Li
- Key
Laboratory of Bio-based Material Science and Technology of Ministry
of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
- Material
Science and Engineering College Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Chengyu Wang
- Key
Laboratory of Bio-based Material Science and Technology of Ministry
of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Di Wang
- Key
Laboratory of Bio-based Material Science and Technology of Ministry
of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| | - Jian Li
- Key
Laboratory of Bio-based Material Science and Technology of Ministry
of Education, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China
| |
Collapse
|
7
|
Zhang M, Zhai X, Sun M, Ma T, Huang Y, Huang B, Du Y, Yan C. When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chem Soc Rev 2020; 49:9220-9248. [PMID: 33165456 DOI: 10.1039/d0cs00462f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rare earth (RE) elements are widely used in the luminescence and magnetic fields by virtue of their abundant 4f electron configurations. However, the overall performance and aqueous stability of single-component RE materials need to be urgently improved to satisfy the requirements for multifunctional applications. Carbon nanodots (CNDs) are excellent nanocarriers with abundant functional surface groups, excellent hydrophilicity, unique photoluminescence (PL) and tunable features. Accordingly, RE-CND hybrids combine the merits of both RE and CNDs, which dramatically enhance their overall properties such as luminescent and magnetic-optical imaging performances, leading to highly promising practical applications in the future. Nevertheless, a comprehensive review focusing on the introduction and in-depth understanding of RE-CND hybrid materials has not been reported to date. This review endeavors to summarize the recent advances of RE-CNDs, including their interaction mechanisms, general synthetic strategies and applications in fluorescence, biosensing and multi-modal biomedical imaging. Finally, we present the current challenges and the possible application perspectives of newly developed RE-CND materials. We hope this review will inspire new design ideas and valuable references in this promising field in the future.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Construction of NaYF4:Eu@carbon dots nanocomposites for multifunctional applications. J Colloid Interface Sci 2019; 543:156-163. [DOI: 10.1016/j.jcis.2019.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
|
9
|
Lu F, Hu R, Wang S, Guo X, Yang G. Luminescent properties of benzothiazole derivatives and their application in white light emission. RSC Adv 2017. [DOI: 10.1039/c6ra25369e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A saturated white-light emission was obtained by dispersing three benzothiazole analogues into a solid PMMA matrix. This skillfully avoids the detrimental energy transfer between doped dyes providing a simple approach for fabrication of white-light emitting devices.
Collapse
Affiliation(s)
- Fengxian Lu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Xudong Guo
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Photochemistry
- Institute of Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|