1
|
Mahanta CS, Hansdah S, Khuntia K, Jena BB, Swain BR, Acharya S, Dash BP, Debata PR, Satapathy R. Novel carboranyl-BODIPY conjugates: design, synthesis and anti-cancer activity. RSC Adv 2024; 14:34643-34660. [PMID: 39479484 PMCID: PMC11521004 DOI: 10.1039/d4ra07241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
A series of four carboranyl-BODIPY conjugates (o-CB-10, m-CB-15, Me-o-CB-28, and Me-o-CB-35) and one phenylene-BODIPY conjugate (PB-20) were synthesized. The carboranyl-BODIPY conjugates incorporate boron clusters, specifically ortho- and meta-carboranes, covalently linked to BODIPY fluorophores while the phenylene-BODIPY conjugate features a phenylene ring covalently linked to BODIPY fluorophore. The newly synthesized conjugates were characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, FT-IR, and high-resolution mass spectral analysis. In vitro cytotoxicity of the synthesized conjugates has been evaluated against the HeLa cervical cancer cell line. The study reveals that o-CB-10 shows a maximum cell death potential at lower concentrations (12.03 μM) and inhibited cell proliferation and migration in cancer (HeLa) cells. Additionally, flow cytometry study reveals that o-CB-10 and Me-o-CB-28 arrest the cell cycle at the S phase. The results indicate that the carboranyl-BODIPY conjugates have the potential to be effective anticancer agents.
Collapse
Affiliation(s)
| | - Sunitee Hansdah
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Kabita Khuntia
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Bibhuti Bhusan Jena
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Biswa Ranjan Swain
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | - Subhadeep Acharya
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| | | | - Priya Ranjan Debata
- Department of Zoology Maharaja Sriram Chandra Bhanja Deo University Sri Ram Chandra Vihar, Takatpur, Mayurbhanj Baripada 757003 Odisha India
| | - Rashmirekha Satapathy
- Department of Chemistry Ravenshaw University College Square Cuttack 753003 Odisha India
| |
Collapse
|
2
|
Chuncha V, Achary Balahoju S, Dutta S, Giribabu L, Chitta R. Investigating the role of corrole as an excitation energy relay in light-induced processes in closely connected N,N'-bis(biphenyl-4-yl)aniline functionalized corrole donor-acceptor dyad. Photochem Photobiol 2024; 100:1041-1054. [PMID: 38549042 DOI: 10.1111/php.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 07/30/2024]
Abstract
A photosynthetic antenna-reaction center model, BBA-PFCor comprised of N,N'-bis(biphenyl-4-yl)aniline (BBA) covalently functionalized to bis(pentafluoro)corrole moiety has been prepared and the contribution of the BBA as the photoinduced energy transfer antenna was investigated. UV-visible studies have shown that integrating the electron-rich BBA chromophore into the corrole core has broadened the soret band of the corrole moiety with the absorption spanning from 300 to 700 nm. Electrochemical studies, in corroboration with the computational calculations, revealed that, BBA moiety can act as an electron reservoir and, in the excited state, it would transfer the excited energy to the corrole moiety in the dyad. Steady-state fluorescence studies have demonstrated that, upon photoexcitation of the BBA moiety of BBA-PFCor at 310 nm in solvents of varied polarity, the BBA emission centered at 400 nm was observed to be quenched, with the concomitant appearance of the corrole emission from 500 to 700 nm, indicating the happening of photoinduced energy transfer (PEnT) from 1BBA* to corrole moiety. Parallel control experiments involving the excitation of the corrole moiety at 410 nm did not result in the diminishing of the corrole emission, suggesting that the quenching of the BBA emission in BBA-PFCor is majorly due to intramolecular PEnT from 1BBA* to corrole moiety leading to the formation of singlet excited corrole, that is, 1BBA*-PFCor ➔ BBA-1PFCor*. The free energy changes of PEnT, ΔGEnT, were found to be thermodynamically feasible in all the solvents used for the study. Parallel time-resolved fluorescence studies were congruent with the steady-state fluorescence results and provided further evidence for the occurrence of ultrafast PEnT from 1BBA*➔corrole in the dyad with the rates of energy transfer (kEnT) of ~108 s-1.
Collapse
Affiliation(s)
- Vijaykumar Chuncha
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Shivaprasad Achary Balahoju
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Snigdha Dutta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Lingamallu Giribabu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Raghu Chitta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| |
Collapse
|
3
|
Li Y, Zhang J, Zhu SE, Wei Y, Zhang F, Chen L, Zhou X, Liu S. Efficient Red-to-Blue Triplet-Triplet Annihilation Upconversion Using the C 70-Bodipy-Triphenylamine Triad as a Heavy-Atom-Free Triplet Photosensitizer. J Phys Chem B 2023; 127:8476-8486. [PMID: 37606596 DOI: 10.1021/acs.jpcb.3c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) with heavy-atom-free organic triplet photosensitizers has attracted extensive attention recently, however, the successful examples with absorption in red and first near-infrared (NIR-I, 650-900 nm) region are still insufficient. Herein, we conducted a new TTA-UC system of perylene using C70-bodipy-triphenylamine triad (C70-BDP-T) as the heavy-atom-free photosensitizer. Efficient red-to-blue (663 to 450 nm) TTA-UC was achieved in this system with an anti-Stokes shift of 0.88 eV and a quantum yield up to 5.2% (out of a 50% maximum) in deaerated toluene. Notably, this is the highest quantum yield to date in similar TTA-UC systems with heavy-atom-free organic photosensitizers. Using steady-state and transient absorption spectroscopy, together with cyclic voltammogram and quantum chemical calculations, photophysical and photochemical mechanisms were elucidated. Specifically, two triplet triads, C70-3BDP*-T and 3C70*-BDP-T, were produced efficiently upon photoexcitation, with lifetimes of 2.0 ± 0.1 and 32.2 ± 0.3 μs, respectively. Electron transfer and recombination mechanisms were confirmed to play crucial roles in the formation of these triplets, instead of intersystem crossing. Our results shed light on the superiority of fullerenes in the development of heavy-atom-free photosensitizers.
Collapse
Affiliation(s)
- Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhui Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yaxiong Wei
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fan Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lin Chen
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Spanning BODIPY fluorescence with self-assembled micellar clusters. Colloids Surf B Biointerfaces 2022; 216:112532. [PMID: 35525227 DOI: 10.1016/j.colsurfb.2022.112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
BODIPY dyes possess favorable optical properties for a variety of applications including in vivo and in vitro diagnostics. However, their utilization might be limited by their water insolubility and incompatibility with chemical modifications, resulting in low aggregation stability. Here, we outline the route for addressing this issue. We have demonstrated two approaches, based on dye entrapment in micellar coordination clusters (MCCs); this provides a general solution for water solubility as well as aggregation stability of the seven BODIPY derivatives. These derivatives have various bulky aromatic substituents in the 2,3,5,6- and meso-positions and can rotate relative to a dipyrrin core, which also provides molecular rotor properties. The molecular structural features and the presence of aromatic groups allows BODIPY dyes to be used as "supporting molecules", thus promoting micelle-micelle interaction and micellar network stabilization. In the second approach, self-micellization, following BODIPY use, leads to MCC formation without the use of any mediators, including chelators and/or metal ions. In both approaches, BODIPY exhibits an excellent optical response, at a concentration beyond its solubilization limit in aqueous media and without undesired crystallization. The suggested approaches represent systems used to encapsulate BODIPY in a capsule-based surfactant environment, enabling one to track the aggregation of BODIPY; these approaches represent an alternative system to study and apply BODIPY's molecular rotor properties. The stabilized compounds, i.e., the BODIPY-loaded MCCs, provide a unique feature of permeability to hydrophilic ligand-switching proteins such as BSA; they exhibit a bright "turn-on" fluorescence signal within the clusters via macromolecular complexation, thus expanding the possibilities of water-soluble BODIPY-loaded MCCs utilization for functional indicators.
Collapse
|
5
|
Cappello D, Buguis FL, Boyle PD, Gilroy JB. Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Cappello
- The University of Western Ontario Department of Chemistry CANADA
| | | | - Paul D. Boyle
- The University of Western Ontario Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|
6
|
Madrid-Úsuga D, Ortiz A, Reina JH. Photophysical Properties of BODIPY Derivatives for the Implementation of Organic Solar Cells: A Computational Approach. ACS OMEGA 2022; 7:3963-3977. [PMID: 35155892 PMCID: PMC8829925 DOI: 10.1021/acsomega.1c04598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Solar cells based on organic compounds are a proven emergent alternative to conventional electrical energy generation. Here, we provide a computational study of power conversion efficiency optimization of boron dipyrromethene (BODIPY) derivatives by means of their associated open-circuit voltage, short-circuit density, and fill factor. In doing so, we compute for the derivatives' geometrical structures, energy levels of frontier molecular orbitals, absorption spectra, light collection efficiencies, and exciton binding energies via density functional theory (DFT) and time-dependent (TD)-DFT calculations. We fully characterize four D-π-A (BODIPY) molecular systems of high efficiency and improved J sc that are well suited for integration into bulk heterojunction (BHJ) organic solar cells as electron-donor materials in the active layer. Our results are twofold: we found that molecular complexes with a structural isoxazoline ring exhibit a higher power conversion efficiency (PCE), a useful result for improving the BHJ current, and, on the other hand, by considering the molecular systems as electron-acceptor materials, with P3HT as the electron donor in the active layer, we found a high PCE compound favorability with a pyrrolidine ring in its structure, in contrast to the molecular systems built with an isoxazoline ring. The theoretical characterization of the electronic properties of the BODIPY derivatives provided here, computed with a combination of ab initio methods and quantum models, can be readily applied to other sets of molecular complexes to hierarchize optimal power conversion efficiency.
Collapse
Affiliation(s)
- Duvalier Madrid-Úsuga
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| | - Alejandro Ortiz
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Heterocyclic
Compounds Research Group—GICH, Departamento de Química, Universidad del Valle, 760032 Cali, Colombia
| | - John H. Reina
- Centre
for Bioinformatics and Photonics—CIBioFi, Universidad del Valle, Calle 13 No. 100-00, Edificio E20 No. 1069, 760032 Cali, Colombia
- Quantum
Technologies, Information and Complexity Group—QuanTIC, Departamento
de Física, Universidad del Valle, 760032 Cali, Colombia
| |
Collapse
|
7
|
Rabah J, Yonkeu L, Wright K, Vallée A, Méallet-Renault R, Ha-Thi MH, Fatima A, Clavier G, Fensterbank H, Allard E. Synthesis of a dual clickable fullerene platform and construction of a dissymmetric BODIPY-[60]Fullerene-DistyrylBODIPY triad. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zhu SE, Zhang JH, Gong Y, Dou LF, Mao LH, Lu HD, Wei CX, Chen H, Wang XF, Yang W. Broadband Visible Light-Absorbing [70]Fullerene-BODIPY-Triphenylamine Triad: Synthesis and Application as Heavy Atom-Free Organic Triplet Photosensitizer for Photooxidation. Molecules 2021; 26:1243. [PMID: 33669144 PMCID: PMC7956457 DOI: 10.3390/molecules26051243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
A broadband visible light-absorbing [70]fullerene-BODIPY-triphenylamine triad (C70-B-T) has been synthesized and applied as a heavy atom-free organic triplet photosensitizer for photooxidation. By attaching two triphenylmethyl amine units (TPAs) to the π-core of BODIPY via ethynyl linkers, the absorption range of the antenna is extended to 700 nm with a peak at 600 nm. Thus, the absorption spectrum of C70-B-T almost covers the entire UV-visible region (270-700 nm). The photophysical processes are investigated by means of steady-state and transient spectroscopies. Upon photoexcitation at 339 nm, an efficient energy transfer (ET) from TPA to BODIPY occurs both in C70-B-T and B-T, resulting in the appearance of the BODIPY emission at 664 nm. Direct or indirect (via ET) excitation of the BODIPY-part of C70-B-T is followed by photoinduced ET from the antenna to C70, thus the singlet excited state of C70 (1C70*) is populated. Subsequently, the triplet excited state of C70 (3C70*) is produced via the intrinsic intersystem crossing of C70. The photooxidation ability of C70-B-T was studied using 1,5-dihydroxy naphthalene (DHN) as a chemical sensor. The photooxidation efficiency of C70-B-T is higher than that of the individual components of C70-1 and B-T, and even higher than that of methylene blue (MB). The photooxidation rate constant of C70-B-T is 1.47 and 1.51 times as that of C70-1 and MB, respectively. The results indicate that the C70-antenna systems can be used as another structure motif for a heavy atom-free organic triplet photosensitizer.
Collapse
Affiliation(s)
- San-E Zhu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Jian-Hui Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Yu Gong
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Li-Feng Dou
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Li-Hua Mao
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Hong-Dian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Chun-Xiang Wei
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Hong Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| | - Xue-Fei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (J.-H.Z.); (Y.G.); (L.-F.D.); (L.-H.M.); (H.-D.L.); (C.-X.W.); (H.C.)
| |
Collapse
|
9
|
Tran TT, Rabah J, Ha-Thi MH, Allard E, Nizinski S, Burdzinski G, Aloïse S, Fensterbank H, Baczko K, Nasrallah H, Vallée A, Clavier G, Miomandre F, Pino T, Méallet-Renault R. Photoinduced Electron Transfer and Energy Transfer Processes in a Flexible BODIPY-C 60 Dyad. J Phys Chem B 2020; 124:9396-9410. [PMID: 32897728 DOI: 10.1021/acs.jpcb.0c05187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new donor-acceptor dyad composed of a BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor-acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump-probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.
Collapse
Affiliation(s)
- Thu-Trang Tran
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.,Faculty of Physics and Technology, Thai Nguyen University of Science, Thai Nguyen 24000, Vietnam
| | - Jad Rabah
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Emmanuel Allard
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Stanislaw Nizinski
- Adam Mickiewicz University in Poznan, Fac Phys, Quantum Elect Lab, PL-61614 Poznan, Poland
| | - Gotard Burdzinski
- Adam Mickiewicz University in Poznan, Fac Phys, Quantum Elect Lab, PL-61614 Poznan, Poland
| | - Stéphane Aloïse
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR-CNRS 8516, Université de Lille, F-59000 Lille, France
| | - Hélène Fensterbank
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Krystyna Baczko
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Houssein Nasrallah
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Anne Vallée
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Gilles Clavier
- PPSM, UMR-CNRS 8531, ENS Paris Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Fabien Miomandre
- PPSM, UMR-CNRS 8531, ENS Paris Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Thomas Pino
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Rachel Méallet-Renault
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
10
|
Cabrera-Espinoza A, Insuasty B, Ortiz A. Synthesis, the electronic properties and efficient photoinduced electron transfer of new pyrrolidine[60]fullerene- and isoxazoline[60]fullerene-BODIPY dyads: nitrile oxide cycloaddition under mild conditions using PIFA. NEW J CHEM 2017. [DOI: 10.1039/c7nj02057k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first synthesis of fulleroisoxazoline-BODIPY whose electron-accepting ability of the C60 cage is better than its fulleropyrrolidine-BODIPY counterpart.
Collapse
Affiliation(s)
- Andrea Cabrera-Espinoza
- Heterocyclic Compounds Research Group
- Department of Chemistry
- Universidad del Valle
- Cali
- Colombia
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group
- Department of Chemistry
- Universidad del Valle
- Cali
- Colombia
| | - Alejandro Ortiz
- Heterocyclic Compounds Research Group
- Department of Chemistry
- Universidad del Valle
- Cali
- Colombia
| |
Collapse
|
11
|
Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev 2017; 46:915-1016. [DOI: 10.1039/c6cs00368k] [Citation(s) in RCA: 1413] [Impact Index Per Article: 176.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thermally activated delayed fluorescence: harvesting dark triplet excitons to generate bright emissive singlet excitons.
Collapse
Affiliation(s)
- Zhiyong Yang
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Zhu Mao
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Zongliang Xie
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Yi Zhang
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Siwei Liu
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Juan Zhao
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Jiarui Xu
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | - Zhenguo Chi
- PCFM Lab
- GD HPPC Lab
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of Optoelectronic Material and Technologies
- School of Chemistry
| | | |
Collapse
|