1
|
Noirat DB, Frick B, Jakobsen B, Appel M, Niss K. Density scaling and isodynes in glycerol-water mixtures. Phys Chem Chem Phys 2024; 26:29003-29014. [PMID: 39552335 DOI: 10.1039/d4cp02231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This paper presents dielectric and neutron spectroscopy data on two different glycerol-water mixtures at elevated pressures. Glycerol-water liquid mixtures have a high concentration of hydrogen bonds which usually is expected to lead to complex dynamics. However, with regard to the pressure dependence of the dynamics we reveal a surprisingly simple picture. Different aspects of the dynamics have the same pressure dependence, in other words the phase diagram of the liquids have so-called isodynes, density scaling is also observed to hold reasonably well and there is even some reminiscence of isochronal superposition. This suggests that these aspect of liquid dynamics are very general and hold for different types of intermolecular interactions.
Collapse
Affiliation(s)
- David B Noirat
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bo Jakobsen
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| | - Markus Appel
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Kristine Niss
- "Glass and Time", IMFUFA, Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Ngai KL. Origin of ργ/ T scaling of primary and secondary conductivity relaxation times in mixture of water with protic ionic liquid. Phys Chem Chem Phys 2024; 26:22083-22089. [PMID: 39118411 DOI: 10.1039/d4cp01959h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Murali et al. [J. Phys. Chem. Lett., 2024, 15, 3376-3382] made ambient and high pressure dielectric measurements of a supercooled aqueous mixture of an acidic ionic liquid to find the presence of the primary (σ) conductivity relaxation together with the secondary (ν) conductivity relaxation originating from the water clusters confined by the cations and anions with relaxation times τσ and τν respectively. From the isothermal and isobaric conductivity relaxation data found on varying thermodynamic conditions (i.e. T and P) at constant τσ are the invariance of (i) the frequency dispersion or the Kohlrausch function exponent (1 - n) of the primary conductivity relaxation, and (ii) the ratio of the primary and secondary conductivity times, τσ/τν. This co-invariance of τσ, τν, and (1 - n) at constant τσ was observed before in non-aqueous ionic liquids, but it is found for the first time in aqueous ionic liquids. The new data together with PVT measurements enable Murali et al. to show additionally that both τσ and τν are functions of ργ/T with a single exponent γ = 0.58. The Coupling model is the only theory predicting the co-invariance of τσ, τν, and (1 - n) as well as the ργ/T scaling of both τσ and τν. It is applied herein to address and explain the data of the ionic liquid-water mixture.
Collapse
Affiliation(s)
- K L Ngai
- Institute for Chemical and Physical Processes (IPCF), Consiglio Nazionale delle Ricerche (CNR) Largo B, Pontecorvo 3, Pisa I-56127, Italy.
| |
Collapse
|
3
|
Jesionek P, Hachuła B, Jurkiewicz K, Włodarczyk P, Hreczka M, Kamiński K, Kamińska E. Variation of Activation Volume as an Indicator of the Difference in Clusterization Phenomenon Induced by H-Bonding and F-Π Stacking Interactions in Enantiomers and a Racemate of Flurbiprofen. J Phys Chem B 2024; 128:4021-4032. [PMID: 38608273 PMCID: PMC11056992 DOI: 10.1021/acs.jpcb.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
In this paper, X-ray diffraction (XRD), differential scanning calorimetry (DSC), broadband dielectric (BDS), and Fourier transform infrared (FTIR) spectroscopy supported by molecular dynamics (MD) simulations and quantum chemical computations were applied to investigate the structural and thermal properties, molecular dynamics, and H-bonding pattern of R-, S-, and RS-flurbiprofen (FLP). Experimental data indicated various spatial molecular arrangements in crystalline forms of examined systems, which seemed to disappear in the liquid state. Surprisingly, deeper analysis of high-pressure dielectric data revealed unexpected variation in the activation volume of pure enantiomers and a racemate. MD simulations showed that it is an effect of the clusterization phenomenon and a higher population of small associates in the former samples. Moreover, theoretical consideration exposed the particular role of unspecific F-Π interactions as a driving force underlying local molecular arrangements of molecules in the liquid and the crystal lattice of R-, S-, and RS-FLP.
Collapse
Affiliation(s)
- Paulina Jesionek
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Barbara Hachuła
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland
| | - Karolina Jurkiewicz
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Patryk Włodarczyk
- Łukasiewicz
Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland
| | - Marek Hreczka
- Łukasiewicz
Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100, Gliwice, Poland
- Department
of Mechatronics, Silesian University of
Technology, Akademicka
10A St., 44-100 Gliwice, Poland
| | - Kamil Kamiński
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Ewa Kamińska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Knudsen PA, Heyes DM, Niss K, Dini D, Bailey NP. Invariant dynamics in a united-atom model of an ionic liquid. J Chem Phys 2024; 160:034503. [PMID: 38230811 DOI: 10.1063/5.0177373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
We study a united-atom model of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl)sulfonylamide to determine to what extent there exist curves in the phase diagram along which the microscopic dynamics are invariant when expressed in dimensionless, or reduced, form. The initial identification of these curves, termed isodynes, is made by noting that contours of reduced shear viscosity and reduced self-diffusion coefficient coincide to a good approximation. Choosing specifically the contours of reduced viscosity as nominal isodynes, further simulations were carried out for state points on these, and other aspects of dynamics were investigated to study their degree of invariance. These include the mean-squared displacement, shear-stress autocorrelation function, and various rotational correlation functions. These were invariant to a good approximation, with the main exception being rotations of the anion about its long axis. The dynamical features that are invariant have in common that they are aspects that would be relevant for a coarse-grained description of the system; specifically, removing the most microscopic degrees of freedom in principle leads to a simplification of the potential energy landscape, which allows for the existence of isodynes.
Collapse
Affiliation(s)
- Peter A Knudsen
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - David M Heyes
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Kristine Niss
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Nicholas P Bailey
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
5
|
Heczko D, Tarnacka M, Kamiński K, Paluch M, Kamińska E. Breakdown of isochronal superpositioning of α- and β-relaxation times in the van der Waals system – loratadine. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Stoppleman JP, McDaniel JG, Cicerone MT. Excitations follow (or lead?) density scaling in propylene carbonate. J Chem Phys 2022; 157:204506. [DOI: 10.1063/5.0123444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Structural excitations that enable interbasin (IB) barrier crossings on a potential energy landscape are thought to play a facilitating role in the relaxation of liquids. Here, we show that the population of these excitations exhibits the same density scaling observed for α relaxation in propylene carbonate, even though they are heavily influenced by intramolecular modes. We also find that IB crossing modes exhibit a Gr[Formula: see text]neisen parameter ( γ G) that is approximately equivalent to the density scaling parameter γ TS. These observations suggest that the well-documented relationship between γ G and γ TS may be a direct result of the pressure dependence of the frequency of unstable (relaxation) modes associated with IB motion.
Collapse
Affiliation(s)
- John P. Stoppleman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| | - Jesse G. McDaniel
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| | - Marcus T. Cicerone
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,
| |
Collapse
|
7
|
Niss K. A density scaling conjecture for aging glasses. J Chem Phys 2022; 157:054503. [DOI: 10.1063/5.0090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aging rate of glasses has traditionally been modeled as a function of temperature, T , andfictive temperature, while density, ρ, is not explicitly included as a parameter. However, this de-scription does not naturally connect to the modern understanding of what governs the relaxationrate in equilibrium. In equilibrium it is well known that the relaxation rate, γeq , depends on tem-perature and density. In addition a large class of systems obey density scaling which means therate specifically depends on the scaling parameter, Γ = e(ρ)/T , where e(ρ) is a system specificfunction. This paper present a generalization of the fictive temperature concept in terms of a fic-tive scaling paramter, Γfic , and a density scaling conjecture for aging glasses in which the agingrate depends on Γ and Γfic .
Collapse
|
8
|
Ren NN, Guan PF, Ngai KL. Isochronal superpositioning of the caged dynamics, the α, and the Johari-Goldstein β relaxations in metallic glasses. J Chem Phys 2021; 155:244502. [PMID: 34972387 DOI: 10.1063/5.0072527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The superposition of the frequency dispersions of the structural α relaxation determined at different combinations of temperature T and pressure P while maintaining its relaxation time τα(T, P) constant (i.e., isochronal superpositioning) has been well established in molecular and polymeric glass-formers. Not known is whether the frequency dispersion or time dependence of the faster processes including the caged molecule dynamics and the Johari-Goldstein (JG) β relaxation possesses the same property. Experimental investigation of this issue is hindered by the lack of an instrument that can cover all three processes. Herein, we report the results from the study of the problem utilizing molecular dynamics simulations of two different glass-forming metallic alloys. The mean square displacement 〈Δr2t〉, the non-Gaussian parameter α2t, and the self-intermediate scattering function Fsq,t at various combinations of T and P were obtained over broad time range covering the three processes. Isochronal superpositioning of 〈Δr2t〉, α2t, and Fsq,t was observed over the entire time range, verifying that the property holds not only for the α relaxation but also for the caged dynamics and the JG β relaxation. Moreover, we successfully performed density ρ scaling of the time τα2,maxT,P at the peak of α2t and the diffusion coefficient D(T, P) to show both are functions of ργ/T with the same γ. It follows that the JG β relaxation time τβ(T, P) is also a function of ργ/T since τα2,maxT,P corresponds to τβ(T, P).
Collapse
Affiliation(s)
- N N Ren
- Beijing Computational Science Research Center, Beijing 100193, China
| | - P F Guan
- Beijing Computational Science Research Center, Beijing 100193, China
| | - K L Ngai
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
9
|
Attia E, Dyre JC, Pedersen UR. Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures. Phys Rev E 2021; 103:062140. [PMID: 34271644 DOI: 10.1103/physreve.103.062140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022]
Abstract
This paper studies numerically the Weeks-Chandler-Andersen system, which is shown to obey hidden scale invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation makes it advantageous to use the fourth-order Runge-Kutta algorithm for tracing out isomorphs. Good isomorph invariance of structure and dynamics is observed over more than three orders of magnitude temperature variation. For all state points studied, the virial potential-energy correlation coefficient and the density-scaling exponent are controlled mainly by the temperature. Based on the assumption of statistically independent pair interactions, a mean-field theory is developed that rationalizes this finding and provides an excellent fit to data at low temperatures.
Collapse
Affiliation(s)
- Eman Attia
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| | - Ulf R Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| |
Collapse
|
10
|
Knapik-Kowalczuk J, Rams-Baron M, Paluch M. Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Jin X, Guo Y, Feng S, Capaccioli S, Ngai KL, Wang LM. Isochronal Superposition of the Structural α-Relaxation and Invariance of Its Relation to the β-Relaxation to Changes of Thermodynamic Conditions in Methyl m-Toluate. J Phys Chem B 2020; 124:6690-6697. [PMID: 32633964 DOI: 10.1021/acs.jpcb.0c04444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The dielectric spectra of methyl m-toluate (MMT) in supercooled liquid and glassy states were measured over wide ranges of temperature T at ambient and elevated pressures P. We found that the frequency dispersion of the loss peak contributed by the structural α-relaxation is invariant to changes of P and T, while keeping the loss peak frequency fα(T,P) constant. This isochronal superposition property of the α-relaxation holds for different choices of fα(T,P). The invariant frequency dispersions for the same fα(T,P) are also indicated by the fractional exponent βKWW in the Fourier transform of the Kohlrausch-Williams-Watts (KWW) function. Similarly, the fragility m index of MMT keeps approximately constant on varying pressure, largely different from H-bonded glass formers. The secondary β-relaxation at a frequency higher than fα(T,P) is found to shift to lower frequencies by elevating pressure in concert with the α-relaxation. The ratio τα(T,P)/τβ(T,P) is approximately unchanged to variations of T and P while keeping τα(T,P) constant. These properties observed in MMT offer experimental evidence of the dynamic correlation between α- and β-relaxations in pure small-molecule glass-formers.
Collapse
Affiliation(s)
- Xiao Jin
- State Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yuxing Guo
- State Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shidong Feng
- State Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Simone Capaccioli
- CNR-IPCF, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - K L Ngai
- State Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China.,CNR-IPCF, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
12
|
Kamińska E, Minecka A, Tarnacka M, Kamiński K, Paluch M. Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Hansen HW, Lundin F, Adrjanowicz K, Frick B, Matic A, Niss K. Density scaling of structure and dynamics of an ionic liquid. Phys Chem Chem Phys 2020; 22:14169-14176. [DOI: 10.1039/d0cp01258k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lines in the pressure–temperature phase diagram with constant conductivity are found to be lines where other dynamic variables as well as the molecular structure factor peak are constant, while charge ordering changes.
Collapse
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| | - Filippa Lundin
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | | | | | - Aleksandar Matic
- Materials Physics
- Department of Physics
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Kristine Niss
- Glass and Time
- IMFUFA
- Department of Science and Environment
- Roskilde University
- DK-4000 Roskilde
| |
Collapse
|
14
|
Adrjanowicz K, Winkler R, Chat K, Duarte DM, Tu W, Unni AB, Paluch M, Ngai KL. Study of Increasing Pressure and Nanopore Confinement Effect on the Segmental, Chain, and Secondary Dynamics of Poly(methylphenylsiloxane). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- K. Adrjanowicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - R. Winkler
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. Chat
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - D. M. Duarte
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - W. Tu
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - A. B. Unni
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI), 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. L. Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
15
|
Roed LA, Hecksher T, Dyre JC, Niss K. Generalized single-parameter aging tests and their application to glycerol. J Chem Phys 2019; 150:044501. [DOI: 10.1063/1.5066387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lisa Anita Roed
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
16
|
Ngai KL, Wang LM. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol. J Phys Chem B 2019; 123:714-719. [PMID: 30601008 DOI: 10.1021/acs.jpcb.8b11453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogen-bonded monohydroxyl alcohols form a large class of glass formers studied more than one hundred years, and still the structure and dynamics have continued to be a research problem. Recent advance suggests a hydrogen-bonded transient supramolecular structure, which is the origin of the Debye relaxation dominating the dielectric loss spectra of many monohydroxyl alcohols. Obscured by the slower Debye relaxation, the structural α-relaxation is either not resolved or showing up as a shoulder and the supposedly universal Johari-Goldstein (JG) β-relaxation is not always observed. Thus, properties of the α-relaxation and the JG β-relaxation as well as the strong connection between the two relaxations generally observed in other classes of glass formers are not commonly known in the monohydroxyl alcohols. Notwithstanding, extremely broadband dielectric relaxation and high-precision light scattering experiments published recently have resolved the α-relaxation and a secondary relaxation in two archetypal monohydroxyl alcohols, 1-propanol and 5-methyl-2-hexanol (5M2H) by Gabriel et al. We analyzed their experimental data and applied the Coupling Model to show that the secondary relaxations in 1-propanol and 5M2H are JG β-relaxations with strong connection to the α-relaxation. The result is novel because it is not known before whether the secondary relaxations of these two monohydroxyl alcohols are JG β-relaxation involving the entire molecule or are intramolecular relaxations. On the basis of this conclusion, we predict that the secondary relaxation is pressure-dependent and the ratio τβ( T, P)/τα( T, P) is invariant to variations of P and T, whereas τα( T, P) is maintained constant and provided that the frequency dispersion of the α-relaxation is also constant. The prediction is compared with the dielectric data of 5M2H at elevated pressures. On the basis of the identification of monohydroxyl alcohols as short-chain polymeric liquids by others, an explanation of the stronger T and P dependences of τα( T, P) than the Debye relaxation time τD( T, P) is given.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Università di Pisa , Largo B. Pontecorvo 3 , I-56127 Pisa , Italy.,State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
17
|
Niss K, Hecksher T. Perspective: Searching for simplicity rather than universality in glass-forming liquids. J Chem Phys 2018; 149:230901. [PMID: 30579292 DOI: 10.1063/1.5048093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e., the central observations that a theory of the physics of glass formation should aim to explain in a unified manner.
Collapse
Affiliation(s)
- Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
18
|
Abstract
This article gives an overview of excess-entropy scaling, the 1977 discovery by Rosenfeld that entropy determines properties of liquids like viscosity, diffusion constant, and heat conductivity. We give examples from computer simulations confirming this intriguing connection between dynamics and thermodynamics, counterexamples, and experimental validations. Recent uses in application-related contexts are reviewed, and theories proposed for the origin of excess-entropy scaling are briefly summarized. It is shown that if two thermodynamic state points of a liquid have the same microscopic dynamics, they must have the same excess entropy. In this case, the potential-energy function exhibits a symmetry termed hidden scale invariance, stating that the ordering of the potential energies of configurations is maintained if these are scaled uniformly to a different density. This property leads to the isomorph theory, which provides a general framework for excess-entropy scaling and illuminates, in particular, why this does not apply rigorously and universally. It remains an open question whether all aspects of excess-entropy scaling and related regularities reflect hidden scale invariance in one form or other.
Collapse
Affiliation(s)
- Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
19
|
Hansen HW, Frick B, Capaccioli S, Sanz A, Niss K. Isochronal superposition and density scaling of the α-relaxation from pico- to millisecond. J Chem Phys 2018; 149:214503. [DOI: 10.1063/1.5055665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Henriette Wase Hansen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Simone Capaccioli
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Alejandro Sanz
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
20
|
Abstract
This paper derives and discusses the configuration-space Langevin equation describing a physically aging R-simple system and the corresponding Smoluchowski equation. Externally controlled thermodynamic variables like temperature, density, and pressure enter the description via the single parameter Ts/T, in which T is the bath temperature and Ts is the "systemic" temperature defined at any time t as the thermodynamic equilibrium temperature of the state point with density ρ(t) and potential energy U(t). In equilibrium, Ts ≅ T with fluctuations that vanish in the thermodynamic limit. In contrast to Tool's fictive temperature and other effective temperatures in glass science, the systemic temperature is defined for any configuration with a well-defined density, even if it is not close to equilibrium. Density and systemic temperature define an aging phase diagram, in which the aging system traces out a curve. Predictions are discussed for aging following various density-temperature and pressure-temperature jumps from one equilibrium state to another, as well as for a few other scenarios. The proposed theory implies that R-simple glass-forming liquids are characterized by the dynamic Prigogine-Defay ratio being equal to unity.
Collapse
Affiliation(s)
- Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
21
|
Abstract
Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. Melting is a classic first-order phase transition, but an accurate thermodynamic description is still lacking. Here, Pedersen et al. develop a theory, validated by simulations of the Lennard-Jones system, for the melting thermodynamics applicable to all systems characterized by hidden scale invariance.
Collapse
|
22
|
Costigliola L, Schrøder TB, Dyre JC. Communication: Studies of the Lennard-Jones fluid in 2, 3, and 4 dimensions highlight the need for a liquid-state 1/d expansion. J Chem Phys 2016; 144:231101. [DOI: 10.1063/1.4954239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lorenzo Costigliola
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B. Schrøder
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Department of Science and Environment, “Glass and Time,” IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|