1
|
Wen R, Shen G, Yu Y, Xu S, Wei J, Huo Y, Jiang S. Optimization of Ti-BA efficiently for the catalytic alcoholysis of waste PET using response surface methodology. RSC Adv 2023; 13:17166-17178. [PMID: 37304773 PMCID: PMC10248717 DOI: 10.1039/d3ra01460f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023] Open
Abstract
A titanium benzoate (Ti-BA) catalyst was prepared by hydrothermal method, which has an ordered eight-face structure, and was used for polyethylene terephthalate (PET) depolymerization. With bis(2-hydroxyethyl)terephthalate (BHET) as the target molecule and ethylene glycol (EG) as the solvent, the best reaction conditions for catalytic alcoholysis via a PET alcoholic solution were investigated via response surface experiments and found to be a EG/PET mass ratio of 3.59, temperature of 217 °C and reaction time of 3.3 h. Under these conditions, the amount of the catalyst required was only 2% of the mass of the PET, and the yield of BHET reached 90.01% and under the same conditions, the yield of BHET could still reach 80.1%. Based on the experimental results, the mechanism of alcoholysis, Ti-BA catalyst activated ethylene glycol deprotonation to achieve the progressive degradation of polymers. This experiment provides a reference for the degradation of polymer waste and other transesterification reactions.
Collapse
Affiliation(s)
- Ruiyang Wen
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Guoliang Shen
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Yang Yu
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Shijie Xu
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Jie Wei
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Yue Huo
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Sijin Jiang
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| |
Collapse
|
2
|
Afshariazar F, Morsali A, Retailleau P. Investigation of the Influence of Functionalization Strategy on Urea 2D MOF Catalytic Performance. Inorg Chem 2023; 62:3498-3505. [PMID: 36790180 DOI: 10.1021/acs.inorgchem.2c03825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Urea-functionalized MOFs with unique properties have recently been used as efficient platforms to conduct organocatalytic reactions. To gain more insight into the key factors which govern an efficient organocatalytic reaction in urea-MOFs, two different urea-containing 2D MOFs TMU-58 ([Zn(L1)(oba)].CH3CN) and TMU-83 ([Zn(L2)(oba)].DMF), where L1 = (1E,5E)-1,5-bis(1-(pyridine-4-ylethylidene)carbonohydrazide, L2 = (1E,5E)-1,5-bis(1-(pyridine-4-ylmethylene)carbonohydrazide, and oba = 4,4'-oxybisbenzoic acid, with abundant accessible active sites, were selected and examined in the methanolysis of styrene oxide. TMU-58 with the ability to form a two-point H-bond with different substrates revealed a high organocatalytic efficiency in the regioselective ring opening of styrene oxide. The catalytic activation of epoxide oxygen by the urea N-H functional sites, followed by the nucleophilic attack of methanol at the benzylic carbon led to the formation of 2-methoxy-2-phenylethanol as the major product. DFT calculations were also performed to investigate the acidic strength of the urea hydrogens in both TMU-58 and TMU-83 structures as a major factor to conduct an efficient catalytic reaction. The results indicated the more acidic nature of the urea hydrogens in TMU-83; however, its catalytic efficiency was remarkably reduced due to the inappropriate orientation of the active interaction sites within the framework revealing the importance of proper orientation of the urea hydrogens in conducting an efficient organocatalytic reaction. The current study provides a comparative study on the function-property relationship in 2D MOF assemblies which has not been explored so far.
Collapse
Affiliation(s)
- Farzaneh Afshariazar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14115-111, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14115-111, Iran
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Zhao X, Wang Q, Kunthom R, Liu H. Sulfonic Acid-Grafted Hybrid Porous Polymer Based on Double-Decker Silsesquioxane as Highly Efficient Acidic Heterogeneous Catalysts for the Alcoholysis of Styrene Oxide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6657-6665. [PMID: 36588472 DOI: 10.1021/acsami.2c17732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
β-Alkoxyalcohols generated from epoxide ring-opening reactions are significant due to their enormous value as pharmaceutical intermediates and fine chemicals. Using a phenyl-substituted double-decker-type silsesquioxane as the precursor, a hybrid porous material (PCS-DDSQ) was synthesized through a Scholl coupling reaction with an AlCl3 catalyst. Then, novel excellent Brønsted acid-derived silsesquioxane solid catalysts (PCS-DDSQ-SO3H-x) were successfully obtained through an electrophilic aromatic substitution reaction of chlorosulfonic acid on phenyl rings of PCS-DDSQ, fully characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, powder X-ray diffraction, temperature-programmed desorption, water contact angle, Brunauer-Emmett-Teller model, thermogravimetric analysis, and solid-state 13C and 29Si nuclear magnetic resonance techniques. The catalytic behavior of the PCS-DDSQ-SO3H-x with different SO3H loadings for the methanolysis of styrene oxide was compared and evaluated. The presence of SO3H groups endows them with excellent catalytic abilities, achieving the highest values from PCS-DDSQ-SO3H-1 (the acid site of its catalyst is 1.84 mmol/g) as 99% conversion and 100% selectivity for the methanolysis of styrene oxide in 30 min, which shows superior catalytic properties of low dosage and high efficiency. Furthermore, the PCS-DDSQ-SO3H-1 catalyst can maintain high activity and selectivity after three cycles. This study provides a feasible method for the preparation of Brønsted solid acid catalysts with different acid loadings by introducing the sulfonic group into PCS-DDSQ.
Collapse
Affiliation(s)
- Xiaohan Zhao
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Qingzheng Wang
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Rungthip Kunthom
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Hongzhi Liu
- International Center for Interdisciplinary Research and Innovation of Silsesquioxane Science, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
4
|
One-Pot Synthesis of 1,2-Pentanediol via the Bifunctional Catalyst of Ti-MWW Strengthened by CeO2 Nanoparticles. Catal Letters 2022. [DOI: 10.1007/s10562-021-03804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Md Rahim SAN, Lee CS, Aroua MK, Wan Daud WMA, Abnisa F, Cognet P, Pérès Y. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Front Chem 2022; 10:845614. [PMID: 35281562 PMCID: PMC8914049 DOI: 10.3389/fchem.2022.845614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The conversion of biomass-derived glycerol into valuable products is an alternative strategy for alleviating energy scarcity and environmental issues. The authors recently uncovered an activated carbon composite electrode with an Amberlyst-15 mediator able to generate 1,2-propanediol, diethylene glycol, and acetol via a glycerol electrocatalytic reduction. However, less attention to mechanistic insights makes its application to industrial processes challenging. Herein, two proposed intermediates, acetol and ethylene glycol, were employed as the feedstocks to fill the gap in the mechanistic understanding of the reactions. The results discovered the importance of acetol in producing 1,2-propanediol and concluded the glycerol electrocatalytic reduction process has a two-step reduction pathway, where glycerol was initially reduced to acetol and consecutively hydrogenated to 1,2-propanediol. At 353 K and 0.28 A/cm2, 1,2-propanediol selectivity achieved 77% (with 59.8 C mol% yield) after 7 h of acetol (3.0 mol/L) electrolysis. Finally, the influences of the temperature, glycerol initial concentration, and current density on the glycerol electrocatalytic reduction were evaluated. The initial step involved the C-O and C-C bonds cleavage in glycerol plays a crucial role in producing either acetol or ethylene glycol intermediate. This was controlled by the temperature, which low to moderate value is needed to maintain a selective acetol-1,2-propanediol route. Additionally, medium glycerol initial concentration reduced the hydrogen formation and indirectly improved 1,2-propanediol yield. A mild current density raised the conversion rate and minimized the growth of intermediates. At 353 K and 0.21 A/cm2, glycerol (3.0 mol/L) electrocatalytic reduction to 1,2-propanediol reached the maximum yield of 42.3 C mol%.
Collapse
Affiliation(s)
| | - Ching Shya Lee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Kheireddine Aroua
- Research Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Department of Engineering, Lancaster University, Lancaster, United Kingdom
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, Bandar Sunway, Malaysia
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| |
Collapse
|
6
|
Deng L, Li S, Liu Y, Lu Z, Fan Y, Yan Y, Yu S. Effect of Ce doping on the structure–activity relationship of MoVO x composite metal oxides. RSC Adv 2021; 11:36007-36015. [PMID: 35492786 PMCID: PMC9043333 DOI: 10.1039/d1ra05531c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Ce-doped MoVOx with disperse rod-shaped exhibits excellent catalytic performance in selective oxidation of benzyl alcohol.
Collapse
Affiliation(s)
- Luyao Deng
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Shuangming Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
- Key Laboratory of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongwei Liu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Zixuan Lu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Yaoxin Fan
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Yunong Yan
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
| | - Sansan Yu
- College of Chemical Engineering, Shenyang University of Chemical Technology, No. 9, 11 St., Shenyang Economic & Technological Development Zone, Shenyang 110142, China
- Key Laboratory of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
7
|
Das A, Anbu N, Sk M, Dhakshinamoorthy A, Biswas S. Influence of Hydrogen Bond Donating Sites in UiO‐66 Metal‐Organic Framework for Highly Regioselective Methanolysis of Epoxides. ChemCatChem 2020. [DOI: 10.1002/cctc.201902219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aniruddha Das
- Department of ChemistryIndian Institute of Technology Guwahati Assam 781039 India
| | - Nagaraj Anbu
- School of ChemistryMadurai Kamaraj University Madurai Tamil Nadu 625021 India
| | - Mostakim Sk
- Department of ChemistryIndian Institute of Technology Guwahati Assam 781039 India
| | | | - Shyam Biswas
- Department of ChemistryIndian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
8
|
Bhagat MN, Bennett CK, Chang GF, Zhu Y, Raghuraman A, Belowich ME, Nguyen ST, Broadbelt LJ, Notestein JM. Enhancing the Regioselectivity of B(C6F5)3-Catalyzed Epoxide Alcoholysis Reactions Using Hydrogen-Bond Acceptors. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Arjun Raghuraman
- The Dow Chemical Company, Lake Jackson, Texas 77566, United States
| | | | | | | | | |
Collapse
|
9
|
|