1
|
Yan M, Fu LL, Feng HC, Namadchian M. Application of Ag nanoparticles decorated on graphene nanosheets for electrochemical sensing of CEA as an important cancer biomarker. ENVIRONMENTAL RESEARCH 2023; 239:117363. [PMID: 37838192 DOI: 10.1016/j.envres.2023.117363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
In this research, a novel biosensing platform is described based on graphene nano-sheets decorated with Ag nano-particles (GNSs@Ag NPs). The designed electrochemical aptasensor was employed to determine carcinoembryonic antigen (CEA), an important cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity for CEA tumor marker because of the high specific surface area and excellent conductivity of the prepared GNSs@Ag NPs composite. The established assay demonstrated a wide linear range from 0.001 pg/mL to 10 pg/mL with a correlation coefficient of 0.9958 and low detection limit (DL) of 0.5 fg/mL based on S/N = 3 protocol. The derived biosensor illustrated acceptable selectivity towards common interfering species including HER2, VEGF, IgG, MUC1 and CFP10. In addition, the aptsensor showed good reproducibility and fast response time. The applicability of the suggested strategy in human serum samples was also examined and compared to the commercial enzyme-linked immunosorbent assay (ELISA). Based on the experimental data, it was found that the discussed sensing platform can be exerted in the monitoring of CEA in different cancers for early diagnosis.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550002, Guizhou, China.
| | - Melika Namadchian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bi L, Teng Y, Baghayeri M, Bao J. Employing Pd nanoparticles decorated on halloysite nanotube/carbon composite for electrochemical aptasensing of HER2 in breast cancer patients. ENVIRONMENTAL RESEARCH 2023; 237:117030. [PMID: 37659641 DOI: 10.1016/j.envres.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
An effective biosensing platform is described based on halloysite nanotube/carbon composite decorated with Pd nanoparticles (HNT/C@Pd NPs). A novel electrochemical aptasensor was designed using the proposed nano-platform to determine human epidermal growth factor receptor 2 (HER2), a breast cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity and selectivity for tumor markers owing to the high specific surface area of HNT/C and good conductivity stems from deposition of Pd NPs into HNT/C composite. With a correlation coefficient of 0.996, the electrochemical aptasensor demonstrated a wide linear range from 0.03 ng/mL to 9 ng/mL. The limit of detection (LOD) of the established assay was 8 pg/mL based on S/N = 3 method. Further, the designed biosensor demonstrated acceptable selectivity, good reproducibility, and high stability. The applicability of the impedimetric sensor in human serum samples was also examined and compared to enzyme-linked immunosorbent assay (ELISA) assay (p-value >0.05). Based on the results, it was found that the proposed methodology can be used in quantification of breast cancer markers for early diagnosis and treatment.
Collapse
Affiliation(s)
- Liangliang Bi
- Department of Ultrasound Diagnosis, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Yue Teng
- Faculty of Medicine, Health and Life Science, Swansea University, SA2 8PP, Swansea, Wales, UK
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Jinlei Bao
- College of Nursing, Shandong Xiehe University, Jinan, Shandong, China
| |
Collapse
|
3
|
Lu H, Ke Z, Feng L, Liu B. Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements. CHEMOSPHERE 2023; 329:138710. [PMID: 37068613 DOI: 10.1016/j.chemosphere.2023.138710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
In this work, a metal-organic framework/graphene oxide (MOF(ZIF-8)/GO) nanocomposite was utilized for the electroanalysis of trace level of Cd(II) after modification of a cheap graphite rod electrode (GRE). After closed circuit process on the modified electrode, the differential pulse anodic stripping voltammetry (DPASV) technique was used for measuring of Cd(II). In optimal conditions, the sensor showed a linear dependence of current with concentration range 0.1-30 ppb for Cd(II). Moreover, limit of detection 0.03 ppb were obtained. Besides good selectivity, the sensor also indicated good reproducibility (below 5%). Moreover, the sensor showed satisfactory sensing performance in river, dam and wastewater samples with recovery ranging from 97.2% to 102.4%. Additionally, possible interfering cations were examined, but no significant interference was found. For the detection of trace Cd(II) in real matrices, this sensor illustrated other good merits like high stability, rapidity and simplicity.
Collapse
Affiliation(s)
- Haitao Lu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zijie Ke
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
4
|
Application of magnetic nanoparticles modified with L-cysteine for pre-concentration and voltammetric detection of copper(II). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Korolkov I, Yeszhanov A, Shakayeva A, Shlimas D, Zhumazhanova A, Zdorovets M. Photo-induced graft (co)polymerization of glycidyl methacrylate and acrylonitrile on PET ion-track membranes for electrochemical detection of uranyl ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yang Q, Rosati G, Abarintos V, Aroca MA, Osma JF, Merkoçi A. Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosens Bioelectron 2022; 202:114005. [DOI: 10.1016/j.bios.2022.114005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
|
7
|
Kharade SB, Chougale RK, Barache UB, Sanadi KR, Rathod KC, Gaikwad SH, Ling YC, Anuse MA, Kamble GS. Design and optimization of sensitive analytical spectrophotometric method for micro determination of copper(II) from e-waste by using of novel chromogenic extractant. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120502. [PMID: 34742155 DOI: 10.1016/j.saa.2021.120502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
In this article, a novel spectrophotometric reagent 1-(pyrimidine)-4, 4, 6-trimethyl-1,4-dihydropyrimidine-2-thiol [PTPT] has been synthesized for liquid-liquid extraction and spectrophotometric determination of copper(II). The as-synthesized ligand has been selectively forms stable complex with copper(II) in basic medium (pH 9.0), in presence of mild pyridine the extraction and color stability has found to be synergistically enhanced. The equilibrium time is 10 min for effective extraction of copper(II) from organic phase and absorbance of colored organic complex in carbon tetrachloride is measured spectrophotometrically at λmax 615 nm against reagent blank. The ternary complex of Cu(II)-PTPT-Py having molar ratio 1:2:2 (M:L:Py) showed green colored complex. The main factors influencing the achievement of synergistic extraction; i.e. pH, ligand concentration, type and volume of the dispersive organic solvents, equilibrium time, synergent concentration and foreign ions were investigated. The Beer's law was obeyed in the concentration range 1-20 μg mL-1 of copper(II) and optimum concentration range is evaluated by Ringbom's plot and it is found that 2.5-25 μg mL-1. In presence of pyridine, molar absorptivity and Sandell's sensitivity of copper(II)-PTPT complex is 2.80 × 103 L mol-1 cm-1 and 0.226 μg cm-2, respectively and in absence of pyridine, molar absorptivity and Sandell's sensitivity of copper(II)-PTPT complex is 1.35 × 103 L mol-1 cm-1 and 0.469 μg cm-2, respectively. The stoichiometry of the copper(II)-PTPT-pyridine complex was calculated by slope ratio method, mole ratio method and Job's method of continuous variation and it has been found as 1:2:2. No significant effects of potentially interfering species i.e. cations and anions were observed. The optimized method was applied for the determination of copper(II) in binary, synthetic mixtures and successfully applied for determination of copper(II) from e-waste samples. The standard deviation (R.S.D.) is 0.11% for n = 5 repetition. The reliability of the developed method is confirmed by comparison of experimental results with atomic absorption spectrophotometer.
Collapse
Affiliation(s)
- Sangram B Kharade
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, Affiliated to Shivaji University, Kolhapur 416234, India; Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagari, Rajasthan 333001, India
| | - Rajvardhan K Chougale
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, Affiliated to Shivaji University, Kolhapur 416234, India
| | - Umesh B Barache
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur 413225, India
| | - Kallappa R Sanadi
- Department of Chemistry, Doodhsakhar Mahavidhalaya, Bidri, Kolhapur 416208, India
| | - Kishan C Rathod
- Department of Chemistry, The New College, Kolhapur 416012, India
| | | | - Yong-Chein Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mansing A Anuse
- Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Ganesh S Kamble
- Department of Engineering Chemistry, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, Affiliated to Shivaji University, Kolhapur 416234, India; Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagari, Rajasthan 333001, India.
| |
Collapse
|
8
|
Li Y, Wen X, Ding X, Teng X, Xiong X, Liu Y. Two types of rhodamine–naphthalimide-based fluorescence sensors for different ratiometric detection of Hg(II) or Fe(III). RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Mohan V, Das N, Jain VK, Khan T, Pandey SK, Faizi MSH, Daniel J, Sen P. Highly Selective and Sensitive (PPB Level) Quinolin‐Based Colorimetric Chemosensor for Cu(II). ChemistrySelect 2020. [DOI: 10.1002/slct.202001814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vaisakh Mohan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Chemistry TKM College of Engineering Kollam 691 005 Kerala India
| | - Nilimesh Das
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Vipin K. Jain
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Tanmoy Khan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Sarvesh K. Pandey
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Bangalore 560 012 Karnataka India
| | - Md. Serajul H. Faizi
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Chemistry Langat Singh College B. R. A. Bihar University Muzaffarpur 842 001 Bihar India
| | - Joseph Daniel
- Department of Chemistry Christ Church College Kanpur 208 001 UP India
| | - Pratik Sen
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| |
Collapse
|
10
|
Mehdinia A, Hazrati N, Mozaffari S. Synthesis and characterization of Fe3O4@polythionine-Au for the removal and pre-concentration of Cu(II) from marine samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Zhao YY, Yang JM, Jin XY, Cong H, Ge QM, Liu M, Tao Z. Recent Development of Supramolecular Sensors Constructed by Hybridization of Organic Macrocycles with Nanomaterials. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200214110110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrocyclic compounds have attracted tremendous attention for their superior
performance in supramolecular recognition, catalysis, and host-guest interaction. With
these admirable properties, macrocyclic compounds were used as modifiers for enhancing
the sensitivity and selectivity of electrodes and optical sensors. The classic macrocyclic
compounds, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes,
were employed as receptors for electrochemical and optical sensors to develop
new analytical methods with the wilder detection range, lower detection limit, and better
tolerance of interference. Macrocyclic molecules functionalized with nanomaterials, the
small entities with dimensions in the nanoscale, realized the versatility and diversification
of the nano-hybrid materials, which improved the capabilities of recognition and response
with the combining characteristics of two components. Herein, this review focused on the development in the
research field of hybridization of organic macrocycles with nanoparticles and their applications for chemosensors,
aiming at both existing researchers in the field and who would like to enter into the research.
Collapse
Affiliation(s)
- Yong-Yi Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jian-Mei Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qing-Mei Ge
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Guo Y, Li D, Zheng S, Xu N, Deng W. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II). Biosens Bioelectron 2020; 159:112192. [PMID: 32291247 DOI: 10.1016/j.bios.2020.112192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
This study develops a dual-channel colorimetric and surface-enhanced Raman scattering (SERS) strategy for detection of Cu2+ utilizing Ag-Au core-satellite nanostructures. 4-mercaptobenzoic acid (MBA) modified Ag nanoparticles (AgNPs@MBA) and 4-mercaptopyridine (Mpy) capped AuNPs (GNPs@Mpy) are first designed via metal-sulfur bonds, respectively. Benefiting from the Cu2+-triggered NPs self-aggregation, the dispersion of AgNPs-GNPs (AgNPs@MBA + GNPs@Mpy) is turned into AgNPs-Cu2+-GNPs core-satellite structures. Because of the presence of pyridyl nitrogen and carboxy group which have specific coordination ability towards Cu2+, induces a certain aggregation of NPs. As well it can be obviously discerned by the visual assay and easily captured by SERS analysis. The UV-Vis method exhibits good linearity in the ranging from 0.1 μM-200 μM for Cu2+, while SERS method displays good linear response from 1 pM to 100 μM. The detection limit of Cu2+ is 0.032 μM by colorimetry and 0.6 pM by SERS method, which is significantly lower than the acceptable limit of Cu2+ in drinking water (20 μM) set by the US EPA. Furthermore, colorimetric and SERS assay based on AgNPs-Cu2+-GNPs core-satellite structures is used to determine Cu2+ in various waters and soils, and the detection results are consistent with the traditional atomic analysis methods. This work offers a new method for detecting Cu2+ in environmental samples, and the plasmonic nanostructure provides new entry point for development of multiplexed sensing platform for in-field application.
Collapse
Affiliation(s)
- Yanyan Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Niwei Xu
- Hunan Taradit Onal Chinese Medical College, 136 Lusong Road, Zhuzhou, Hunan, 412012, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
13
|
Baghayeri M, Ghanei-Motlagh M, Tayebee R, Fayazi M, Narenji F. Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal Chim Acta 2020; 1099:60-67. [DOI: 10.1016/j.aca.2019.11.045] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 11/17/2019] [Indexed: 11/30/2022]
|
14
|
Applications of macrocyclic compounds for electrochemical sensors to improve selectivity and sensitivity. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Kong FY, Li RF, Yao L, Zou HY, Li HY, Wang ZX, Wang W. An OFF-ON detection method for copper(ii) ions using a AgAu-NG nanocomposite modified electrode. Analyst 2019; 144:3967-3971. [PMID: 31140474 DOI: 10.1039/c9an00535h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OFF-ON detection method for Cu2+ was developed at the AgAu bimetallic nanoparticle decorated nitrogen-doped graphene (AgAu-NG) nanocomposite modified electrode. The measurement was based on the copper-catalyzed oxidation of cysteamine (Cys) to regulate the oxidation peak current of Ag. In the absence of Cu2+, Cys can bind to the surface of AgAu-NG via the Ag-S or Au-S bond, thus leading to an obvious decrease of the oxidation peak current of Ag. However, in the presence of Cu2+, Cu2+ can greatly catalyze the oxidation of Cys by dissolved O2 to form cystamine, which would fall off the surface of AgAu-NG nanocomposites, leading to the partial recovery of the oxidation peak current of Ag. With the increase in the concentration of Cu2+, the oxidation peak current of Ag in the presence of Cys increases accordingly. So, the concentration of Cu2+ can be measured. By using the optimum conditions, this method can detect Cu2+ concentrations down to 0.3 nM (S/N = 3) with a linear response range of 1 nM-1 mM. Furthermore, this method was applied to determine Cu2+ concentrations in river water samples and showed excellent analytical performance.
Collapse
Affiliation(s)
- Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.180] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Colorimetric copper ion sensing in solution phase and on paper substrate based on catalytic decomposition of S-nitrosothiol. Anal Chim Acta 2019; 1053:155-161. [DOI: 10.1016/j.aca.2018.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022]
|
18
|
Electrochemical detection of copper in water using carbon paste electrodes prepared from bio-template (grapefruit peels) functionalized with carboxyl groups. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Mikrochim Acta 2019; 186:171. [PMID: 30756239 DOI: 10.1007/s00604-019-3248-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
This review (with 155 refs.) summarizes the progress made in the past few years in the field of electrochemical sensors based on graphene-derived materials for the determination of heavy metal ions. Following an introduction of this field and a discussion of the various kinds of modified graphenes including graphene oxide and reduced graphene oxide, the review covers graphene based electrodes modified (or doped) with (a) heteroatoms, (b) metal nanoparticles, (c) metal oxides, (d) small organic molecules, (e) polymers, and (f) ternary nanocomposites. Tables are provided that afford an overview of representative methods and materials for fabricating electrochemical sensors. Furthermore, sensing mechanisms are discussed. A concluding section presents new perspectives, opportunities and current challenges. Graphical Abstract Schematic illustration of electrochemical sensor for heavy metal ion sensing based on heteroatom-doped graphene, metal-modified graphene, metal-oxide-modified graphene, organically modified graphene, polymer-modified graphene, and ternary graphene based nanocomposites.
Collapse
Affiliation(s)
- Yinxiu Zuo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.,School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, China
| | - Xiaofei Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China.
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang, Nanchang, 330045, China
| |
Collapse
|
20
|
Mohammadabadi SZ, Zanganeh AR. Electrochemically Generated Recognition Sites in Self-doped Polyaniline Modified Electrodes for Voltammetric and Potentiometric Determination of Copper(II) Ion. ELECTROANAL 2017. [DOI: 10.1002/elan.201700496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Saba Zamani Mohammadabadi
- Department of Chemistry, Shahreza Branch; Islamic Azad University; P.O. Box 311-86145 Shahreza, Isfahan Iran
| | - Ali Reza Zanganeh
- Department of Chemistry, Shahreza Branch; Islamic Azad University; P.O. Box 311-86145 Shahreza, Isfahan Iran
| |
Collapse
|
21
|
Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal Chim Acta 2017; 990:11-53. [DOI: 10.1016/j.aca.2017.07.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 02/01/2023]
|
22
|
Mohamed MA, El-badawy FM, El-Desoky HS, Ghoneim MM. Magnetic cobalt ferrite nanoparticles CoFe2O4platform as an efficient sensor for trace determination of Cu(ii) in water samples and different food products. NEW J CHEM 2017. [DOI: 10.1039/c7nj01857f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel electrochemical sensing platform using mesoporous nanoparticles for precise Cu determination is described.
Collapse
Affiliation(s)
- Mona A. Mohamed
- Pharmaceutical Chemistry Deptartment
- National Organization for Drug Control and Research [NODCAR]
- Giza
- Egypt
| | - Fared M. El-badawy
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527 Tanta
| | - Hanaa S. El-Desoky
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527 Tanta
| | - Mohamed M. Ghoneim
- Analytical and Electrochemistry Research Unit
- Department of Chemistry
- Faculty of Science
- Tanta University
- 31527 Tanta
| |
Collapse
|