1
|
Zhu M, Chao Z, Yang H, Xu Z, Cheng C. Improved dye and heavy metal ions removal in saline solutions by electric field-assisted gravity driven filtration using nanofiber membranes with asymmetric micro/nano channels. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Hu J, He Y, Liu P, Shen X. Antifouling improvement of a polyacrylonitrile membrane blended with an amphiphilic copolymer. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The amphiphilic copolymer polyacrylonitrile-co-poly(hydroxyethyl methacrylate) (PAN-co-PHEMA) was readily blended with polyacrylonitrile (PAN) to fabricate a flat-sheet blending membrane through non-solvent induced phase separation (NIPS). In the membrane-forming process, the hydrophilic PHEMA chains are uniformly distributed on the surface, as revealed by the energy-dispersive X-ray tests. The sponge-like sub-layer embedded with droplet-shaped structures is formed at the cross-sections of membranes, because of the high viscosity of the casting solution. With the increase of copolymer concentration, the mean pore size of the blending membranes increases from 26.9 to 99.8 nm, leading to the increase of membrane flux from 93.6 to 205.4 l/(m2h). The incorporation of PAN-co-PHEMA copolymer endows the blending membrane with a rough surface microstructure and enhanced hydrophilicity. The rejection ratio of membranes for emulsified pump oil reaches 99.9%, indicating a prominent separation performance. In the cycle permeation experiments, the flux recovery ratio of the blending membranes is as high as 99.6%, which is much higher than those of PAN membrane. The irreversible fouling of blending membranes induced by oil adsorption is alleviated, and converted into reversible fouling, owing to the reduction of the adhesion force between foulant and membrane surface. These results suggest that the anti-fouling property of PAN membranes has been dramatically strengthened via the addition of PAN-co-PHEMA copolymer.
Collapse
Affiliation(s)
- Jianlong Hu
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Yingfang He
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Peng Liu
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| | - Xiang Shen
- College of Chemistry and Environmental Science , Qujing Normal University , Qujing 655011 , PRC
| |
Collapse
|
3
|
Venkatesh K, Arthanareeswaran G, Suresh Kumar P, Kweon J. Fabrication of Zwitterion TiO 2 Nanomaterial-Based Nanocomposite Membranes for Improved Antifouling and Antibacterial Properties and Hemocompatibility and Reduced Cytotoxicity. ACS OMEGA 2021; 6:20279-20291. [PMID: 34395976 PMCID: PMC8358967 DOI: 10.1021/acsomega.1c02151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Although zwitterion nanomaterials exhibit outstanding antifouling property, hemocompatibility, and antibacterial activity, their poor solubility in organic solvents limits their practical applications. In the present study, natural lysine (amino acids) was surface-grafted onto one-dimensional (1D) TiO2 nanofibers (NFs) through an epoxy ring opening in which the 3-glycidyloxypropyl (dimethoxy) methyl silane was used as a coupling agent. Chemical binding and morphological studies, such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, were conducted to confirm the successful grafting of lysine onto the TiO2 NFs. The lysine-grafted TiO2 NF-polyethersulfone (PES) membrane induced electrostatic interactions and increased the surface charges from -28 to 16 mV in ζ-potential analysis. The lysine exhibited zwitterion characteristics owing to the presence of amino (cations) and carboxyl (anions) functional groups. Moreover, the modified TiO2-PES zwitterion membranes exhibited good water flux performances compared to the pristine membrane. ZT-4 membrane displayed the highest water fluxand bovine serum albumin (BSA) rejection of 137 ± 1.8 L m-2 h-1 and 94 ± 1%, respectively. The cell viability results revealed that the zwitterion PES membrane had excellent biocompatibility with peripheral blood mononuclear cells. The present work offers a convenient strategy to improve the hydrophilicity, antifouling property, and hemocompatibility of modified TiO2-PES zwitterion membranes for their biomedical and blood-contacting applications such as hemodialysis.
Collapse
Affiliation(s)
- Kanagaraj Venkatesh
- Membrane
Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
- Nanomaterials
Laboratory, Department of Physics, National
Institute of Technology, Tiruchirappalli 620015, India
| | - G. Arthanareeswaran
- Membrane
Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
| | - Palaniswamy Suresh Kumar
- Environmental
& Water Technology Centre of Innovation (EWTCOI), Ngee Ann Polytechnic, 535 Clementi Road, 599489 Singapore
| | - Jihyang Kweon
- Water
Treatment and Membrane Laboratory, Department of Environmental Engineering, Konkuk University, Seoul 05029, Republic
of Korea
| |
Collapse
|
4
|
Wang Y, Zhang J, Bao C, Xu X, Li D, Chen J, Hong M, Peng B, Zhang Q. Self-cleaning catalytic membrane for water treatment via an integration of Heterogeneous Fenton and membrane process. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Shi X, Wang L, Yan N, Wang Z, Guo L, Steinhart M, Wang Y. Fast Evaporation Enabled Ultrathin Polymer Coatings on Nanoporous Substrates for Highly Permeable Membranes. Innovation (N Y) 2021; 2:100088. [PMID: 34557742 PMCID: PMC8454551 DOI: 10.1016/j.xinn.2021.100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 11/18/2022] Open
Abstract
Thin polymer coatings covering on porous substrates are a common composite structure required in numerous applications, including membrane separation, and there is a strong need to push the coating thicknesses down to the nanometer scale to maximize the performances. However, producing such ultrathin polymer coatings in a facile and efficient way remains a big challenge. Here, uniform ultrathin polymer covering films (UPCFs) are realized by a facile and general approach based on rapid solvent evaporation. By fast evaporating dilute polymer solutions spread on the surface of porous substrates, we obtain ultrathin coatings (down to ∼30 nm) exclusively on the top surface of porous substrates, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. Upon selective swelling of the block copolymer and crosslinking of PVA, we obtain highly permeable membranes delivering ∼2–10 times higher permeance in ultrafiltration and pervaporation than state-of-the-art membranes with comparable selectivities. We have invented a very convenient but highly efficient process for the direct preparation of defective-free ultrathin coatings on porous substrates, which is extremely desired in different fields in addition to membrane separation. Fast solvent evaporation is developed to produce UPCFs on porous substrates Selective swelling to cavitate block copolymers to form interconnected mesopores UPCFs enable the preparation of highly permeable membranes
Collapse
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Nina Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Zhaogen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
| | - Leiming Guo
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
- Corresponding author
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P.R. China
- Corresponding author
| |
Collapse
|
6
|
Gao Y, Zhang L, Jia R, Huang Z, Xie Y, Xuan S, Zhou N, Zhang Z, Zhu X. 2,5-Dimethylfuran/Acrylonitrile as Latent Monomer for Sequence-Controlled Copolymer and Sequence-Dependent Thermo-Responsivity. Macromol Rapid Commun 2021; 42:e2000724. [PMID: 33496041 DOI: 10.1002/marc.202000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Indexed: 11/10/2022]
Abstract
Sequence control has attracted increasing attention for its ability of regulating polymer property and performance. Herein, the sequence-controlled polymer containing acrylonitrile (AN) is achieved by using 2,5-dimethylfuran/acrylonitrile adduct as a latent monomer. The temperature-dependent retro Diels-Alder reaction is engaged in controlling the release of AN during RAFT polymerization, that is, regulating the instant AN concentration via a non-invasive and in situ manner. Such control over the instant AN concentration and particularly the molar ratio of comonomer pair leads to the simultaneous change of monomer units in "living" polymeric chain, thus resulting in the sequence-controlled polymeric structures. By delicately manipulating the polymerization temperature, diverse sequence-on-demand structures of AN-containing copolymers, such as poly(AN/methyl methacrylate), poly(AN/styrene), poly(AN/butyl acrylate), poly(AN/N,N-dimethylacrylamide), and poly(AN/N-isopropylacrylamide) are created. Meanwhile, this study presents an initial attempt in tuning the thermal responsivity of poly(AN/N-isopropylacrylamide), which is closely correlated to the sequence of polymer structure. More importantly, the polymer with averagely distributed AN units results in the higher thermal sensitivity. Therefore, the synthetic strategy proposed in this work offers a promising platform for accessing the sequence-controlled copolymers containing AN structures, thus expanding the investigation on the relationship between the polymer structures and correlated properties.
Collapse
Affiliation(s)
- Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Jia
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Software Technology, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
7
|
Wang J, Wang H, Yue D. Insights into Mechanism of Hypochlorite-Induced Functionalization of Polymers toward Separating BFR-Containing Components from Microplastics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36755-36767. [PMID: 32692926 DOI: 10.1021/acsami.0c09586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface functionalization of polymers is significant for an emerging flotation technique for separation of microplastics toward the recycling of plastic wastes. In this study, the hypochlorite-induced functionalization of polymers, including ABS, PMMA, PS, and PVC polymers, was intensively investigated. Afterward, its emerging application in flotation separation of microplastic mixtures was assessed based on a Box-Behnken design of the response surface methodology. The functionalization favorably induced decreases in the contact angle and zeta potential of polymers, suggesting hydrophilic and negatively charged surfaces. Particularly, the functionalization of ABS polymers was the most effective, leading to the obviously decreased contact angle (from 92.5° to 67.8°) and zeta potential (from -26.4 mV to -41.7 mV) at neutral condition. The major mechanism for these variations was the oxidation of the sp3-C and butenyl group by hydroxyl radical and the hydrolysis of cyano group, which introduced the hydroxyl, carboxyl, and amide groups and rough topographies on the surface of ABS polymers. Oxygen functionalities introduced on the surfaces of other polymers were far less than those of ABS polymers. This selectivity inspired us to apply the functionalization in flotation separation of ABS microplastics from microplastic mixtures. After functionalization, ABS microplastics showed a significantly decreased floatability in flotation tests since the hydrophilic surface was repulsive to the adhesion of air bubbles. An empirical model was built to optimize the separation efficiency using the overall desirability function. Under optimum conditions, ABS microplastics were efficiently separated, and their removal rate, recovery, and purity were 99.8%, 99.8%, and >99.9%, respectively. These findings provide significant insights into the mechanism of the functionalization of polymers and show a promising prospect for pollution control of plastic wastes.
Collapse
Affiliation(s)
- Jianchao Wang
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan P. R. China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Wang Y, Guo X, Bai Y, Sun X. Effective removal of calcium and magnesium sulfates from wastewater in the rare earth industry. RSC Adv 2019; 9:33922-33930. [PMID: 35528910 PMCID: PMC9073705 DOI: 10.1039/c9ra05615g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 11/21/2022] Open
Abstract
The wastewater discharged from the rare earth (RE) industry generally contains a high level of calcium and magnesium sulfates, which confers permanent hardness and causes difficulties in recycling this wastewater. In this study, the alkyl phenoxy acetic acid derivatives including 4-methyl phenoxy acetic acid (M-POAA), 4-tert-butyl phenoxy acetic acid (B-POAA) and 4-tert-octyl phenoxy acetic acid (O-POAA), were synthesized via the Williamson reaction and characterized by nuclear magnetic resonance (NMR), infrared (IR), and ultra-violet (UV) spectroscopy, as well as elemental analysis and X-ray diffraction (XRD). Synthesis of the POAAs were simple and green, and the raw materials used for their production are widely available and low-cost. The potential for removal of Ca and Mg sulfates from industrial wastewater using POAAs as the organic precipitants was assessed. The total precipitation efficiencies of Ca and Mg from wastewater with the use of POAAs increased with the following order: M-POAA < B-POAA < O-POAA. The residual concentrations of Ca and Mg using O-POAA as the precipitant were lower than 0.099 and 0.089 g L-1, respectively. The O-POAA could be regenerated five times without any significant change in its structure and precipitation performance. Thus, the use of the novel precipitants is a prospective alternative to the conventional processes for softening wastewater.
Collapse
Affiliation(s)
- Yanliang Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China +86-592-3594019 +86-592-3594019
| | - Xiangguang Guo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China +86-592-3594019 +86-592-3594019
| | - Yan Bai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Xiaoqi Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China +86-592-3594019 +86-592-3594019
- Ganzhou Rare Earth Group Co.,Ltd. Ganzhou 341000 China
| |
Collapse
|
9
|
Lin Y, Wu HC, Yasui T, Yoshioka T, Matsuyama H. Development of an HKUST-1 Nanofiller-Templated Poly(ether sulfone) Mixed Matrix Membrane for a Highly Efficient Ultrafiltration Process. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18782-18796. [PMID: 31059228 DOI: 10.1021/acsami.9b04961] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed-matrix membranes (MMMs) have been drawing increasing attention due to the high permeability and high rejection capabilities for highly efficient wastewater treatment applications. Nonetheless, improving the water permeance while maintaining the high rejection capability is still an ongoing challenge for the practically state-of-the-art MMMs. Herein, a new class of poly(ether sulfone) (PES) based MMM containing metal-organic framework (MOF) nanofillers of HKUST-1 and blending with poly(methyl methacrylate- co-methacrylic acid) (PMMA- co-MAA) copolymer, designated as HKUST-1@mPES MMM, were developed for the highly efficient ultrafiltration (UF) process. In this study, the nanosized HKUST-1 nanofillers were removed by water dissolution as sacrificial templating materials, so that the additional nanovoids were deliberately generated throughout the dense polymer matrix. The introduction of PMMA- co-MAA copolymer facilitated the even dispersion of HKUST-1 nanofillers in a polymer matrix, by constructing the bridge connection between inorganic nanofillers and organic matrix. The resultant HKUST-1@mPES MMM exhibited a high pure water permeability (PWP) up to 490 L·m-2·h-1·bar-1, substantially reaching nearly 3 times higher than that of the mPES membrane without HKUST-1 nanofillers loading and maintaining a relatively high BSA rejection rate of 96% without obvious deterioration. The newly developed HKUST-1@mPES MMM thereby exhibited a comparable separation efficiency compared to the cutting-edge UF membranes reported so far. Overall, the nanovoid-generated approach provides new insight into developing advanced MMMs used for highly efficient water treatment applications.
Collapse
Affiliation(s)
- Yuqing Lin
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomoki Yasui
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science & Engineering , Kobe University , 1-1 Rokkodai , Nada, Kobe 657-8501 , Japan
| |
Collapse
|
10
|
Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Arslan M, Acik G, Tasdelen MA. The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 2019. [DOI: 10.1039/c9py00510b] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click chemistry reactions have been applied to the modification of major industrial polymers by analysing the synthetic approaches and the resulting material properties.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Gokhan Acik
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| | - Mehmet Atilla Tasdelen
- Department of Polymer Engineering
- Faculty of Engineering
- Yalova University
- 77100 Yalova
- Turkey
| |
Collapse
|
12
|
Liang W, Chenyang Y, Bin Z, Xiaona W, Zijun Y, Lixiang Z, Hongwei Z, Nanwen L. Hydrophobic polyacrylonitrile membrane preparation and its use in membrane contactor for CO2 absorption. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.09.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang WX, Liu Y, Wang YX, Chen H, Bai LJ. A novel and convenient preparation of antibacterial polyacrylonitrile nanofibers via post-modification using nitrile click chemistry and electrospinning. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0270-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|