1
|
Zhang Y, Idota N, Tsukahara T. Surface-functionalized polydimethylsiloxane sponges for facile and selective recovery of molybdenum from aqueous/acidic solutions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137485. [PMID: 39919634 DOI: 10.1016/j.jhazmat.2025.137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The present study fabricated two types of surface-functionalized polydimethylsiloxane sponges (amine-functionalized and extractant-impregnated), and investigated their applicability as a novel separation-recovery method for molybdenum ion (Mo(VI)) in aqueous and HNO3 solutions. An amine-functionalized polydimethylsiloxane (PDMS) sponge was prepared using glycine hydrochloride as a functional ligand, called the Glycine-PDMS sponge, and bis(2-ethylhexyl) phosphate (HDEHP) and 2,2'-(Methylimino)bis(N,N-di-n-octylacetamide) (MIDOA) were used as extractants for the extractant-impregnated sponges, called the HDEHP-PDMS and MIDOA-PDMS sponges, respectively. The adsorption and desorption of Mo(VI) were demonstrated by facile soaking and squeezing of the sponges, which is unavailable in conventional adsorbents. Each PDMS sponge enabled selective Mo adsorption in aqueous and acidic solutions, and had different ligand and HNO3 concentration dependence of the Mo(VI) adsorption capacities. The pseudo-second-order kinetic model was found to be applicable for the Mo(VI) adsorption process on the sponge surfaces. A regression analysis of the isothermal adsorption curves for Mo ions clarified that the adsorption of Mo ions onto all PDMS sponges occurs spontaneously, and that Mo(VI) adsorption mechanism is different depending on sponges; chemisorption for extractant-impregnated sponges and physisorption for an amine-functionalized, respectively. Furthermore, the squeezing of the Mo ion adsorbed PDMS sponges allowed the rapid desorption and recovery of Mo ions into eluent solutions such as deferoxamine B (DFOB) and H2O2 within a few minutes. These results prove that the novel PDMS sponge approach, enabling facile chemical-mechanical adsorption and desorption control of target elements, has great potential in various fields involving the environment, medicine, energy, and so on.
Collapse
Affiliation(s)
- Yiwei Zhang
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1-N1-6, Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Naokazu Idota
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1-N1-6, Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Takehiko Tsukahara
- Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1-N1-6, Ookayama, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Mahmoud ME, Amira MF, Daniele S, Abouelanwar ME, Morcos BM. Synthesis of ferrofluid DAA-Glu COF@Aminated alginate/Psyllium hydrogel nanocomposite for effective removal of polymethyl methacrylate nanoparticles and silver quantum dots pollutants. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
4
|
Sánchez C. A review of the role of biosurfactants in the biodegradation of hydrophobic organopollutants: production, mode of action, biosynthesis and applications. World J Microbiol Biotechnol 2022; 38:216. [PMID: 36056983 DOI: 10.1007/s11274-022-03401-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
The increasing influence of human activity and industrialization has adversely impacted the environment via pollution with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation. Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydrophobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production, and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has the potential to overcome problems associated with contamination by hydrophobic organopollutants.This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosurfactants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts by a wide range of microorganisms.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, C.P. 90120, Ixtacuixtla, Tlaxcala, Mexico.
| |
Collapse
|
5
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|
6
|
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications. Crit Rev Biotechnol 2021; 42:294-310. [PMID: 34167395 DOI: 10.1080/07388551.2021.1933890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interest in nano-sized materials to develop novel products has increased exponentially in the last decade, together with the search for green methods for their synthesis. An alternative to contribute to a more sustainable approach is the use of microbial-derived molecules to assist nanomaterial synthesis. In this sense, biosurfactants (BSs) have emerged as eco-friendly substitutes in nano-sized materials preparation. The inherent amphiphilic and self-assembly character of BSs associated with their low eco-toxicity, biodegradability, biocompatibility, structural diversity, biological activity, and production from renewable resources are potential advantages over chemically-derived surfactants. In nanotechnology, these versatile molecules play multiple roles. In nanoparticle (NP) synthesis, they act as capping and reducing agents and they also provide self-assembly structures to encapsulation, functionalization, or templates and act as emulsifiers in nanoemulsions. Moreover, BSs can also play as active compounds owing to their intrinsic biological properties. This review presents the recent trends in the development of BS-based nanostructures and their biomedical and environmental applications. Fundamental aspects regarding their antimicrobial and anticancer activities are also discussed.
Collapse
Affiliation(s)
- Marcia Nitschke
- Departamento Físico-Química, Instituto de Química de São Carlos (IQSC) - USP, São Carlos, Brazil
| | | |
Collapse
|
7
|
Huang YH, Jin XY, Yan S, Cong H, Tao Z. Size Effect of Multifarenes on Host-Guest Interactions with Naphthylamines and Naphthols. ChemistrySelect 2018. [DOI: 10.1002/slct.201800812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin-Hui Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Xian-Yi Jin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Shan Yan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province; Guizhou University; Guiyang 550025 China
| |
Collapse
|
8
|
Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery. Front Pharmacol 2017; 8:761. [PMID: 29123482 PMCID: PMC5662584 DOI: 10.3389/fphar.2017.00761] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.
Collapse
Affiliation(s)
- Yuan-Seng Wu
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Siew-Ching Ngai
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Bey-Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Global Asia in the 21st Century Platform, Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Vice Chancellor Office, Jiangsu University, Zhenjiang, China
| | - Learn-Han Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Global Asia in the 21st Century Platform, Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-being Cluster, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Wang X, Jing S, Liu Y, Qiu X, Tan Y. Preparation of dithiocarbamate polymer brush grafted nanocomposites for rapid and enhanced capture of heavy metal ions. RSC Adv 2017. [DOI: 10.1039/c6ra28890a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A core-brush nanocomposite for rapid and enhanced adsorption of heavy metal ions was explored by combining SI-ATRP and DTC functionalization.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Shiyao Jing
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Xiumin Qiu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
| | - Yebang Tan
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- People's Republic of China
- The Key Laboratory of Special Functional Aggregated Materials
| |
Collapse
|