1
|
Cai W, Zhu H, Luo Y, Huang Q. Potential skincare benefits and self-healing properties of Lignosus rhinocerotis polysaccharides as affected by ultrasound-assisted H 2O 2/Vc treatment. Int J Biol Macromol 2024; 281:136543. [PMID: 39414216 DOI: 10.1016/j.ijbiomac.2024.136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Natural polysaccharides have been recognized as major bioactive components in skincare and wound care products. In this study, the skincare benefits and self-healing properties of Lignosus rhinocerotis polysaccharides (LRP) and its degraded products (DLRP-1, DLRP-2 and DLRP-3) by ultrasound assisted H2O2/Vc treatment (U-H/V) at different ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) were investigated. U-H/V altered the internal crystalline structure and microstructure of LRP, and enhanced the thermal stability. Due to the breakage of molecular chains after U-H/V, the moisture absorption of LRP was enhanced but the moisturizing property showed a different degree of reduction. U-H/V significantly improved the antioxidant, anti-tyrosinase and anti-inflammatory activities of LRP. Furthermore, the results of enzyme kinetic studies showed a mixed competitive-noncompetitive inhibition of tyrosinase activity by DLRP-3 and the inhibition constant of DLRP-3 on tyrosinase was 2.97 mg/mL. The apparent viscosity of LRP dispersions showed a first increasing followed by decreasing trend as ultrasonic intensity rose. U-H/V enhanced the viscoelastic properties of LRP gels without destroying their self-healing properties. This findings reveal that U-H/V is beneficial for improving the skincare efficacy of LRP, providing a theoretical foundation for the applicability of LRP in wound dressings.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Honglin Zhu
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangchao Luo
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Chen H, Lin C, Wu Y, Wang B, Kui M, Xu J, Ma H, Li J, Zeng J, Gao W, Chen K. Protective effects of degraded Bletilla striata polysaccharides against UVB-induced oxidative stress in skin. Int J Biol Macromol 2024; 277:134462. [PMID: 39098666 DOI: 10.1016/j.ijbiomac.2024.134462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The Bletilla striata polysaccharides (BSP) extracted through alkali-assisted method exhibit significant antioxidant activity, but its bioaccessibility was inadequate due to its tightly filamentous reticulation structure and high molecular weight. The anti-photoaging and anti-melanogenesis effects of degraded BSP (DBSPs) against UVB-induced oxidative stress on the skin were investigated. The molecular weights of the DBSPs were reduced to 153.94 kDa, 66.96 kDa, and 15.54 kDa from an initial value of 298.82 kDa. The degradation treatment altered the branched chain structure of the DBSPs, while the backbone structure, triple-helix structure, and crystallinity remained. DBSPs with a lower molecular weight exhibit better in vitro antioxidant activity. DBSPs did not show cytotoxicity to HSF cells but inhibited B16F10 cell proliferation. The addition of DBSPs protected HSF and B16F10 cells from oxidative stress and reduced ROS levels, B16F10 melanin content, and B16F10 tyrosinase activity after UVB damage, but DBSP-10 particles were slightly less effective due to aggregation. In contrast, DBSP-5 demonstrated effectiveness in reducing MDA levels in cells stressed by oxidative stress, increased total antioxidant capacity, and inhibited melanogenesis in B16F10, suggesting that DBSP-5 has potential as a topical therapeutic agent for the treatment of skin diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Changhui Lin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yan Wu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China.
| | - Minghong Kui
- Guangdong Guanhao High-tech Co., Ltd, No. 313 Donghai Avenue, Donghai Island, Zhanjiang 524072, PR China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Hongsheng Ma
- Guangdong Guanhao New Material R & D Co., Ltd, Xiangjiang Financial Business Center, Nansha District, Guangzhou 511457, PR China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Cai W, Luo Y, Xue J, Guo R, Huang Q. Effect of ultrasound assisted H 2O 2/Vc treatment on the hyperbranched Lignosus rhinocerotis polysaccharide: Structures, hydrophobic microdomains, and antitumor activity. Food Chem 2024; 450:139338. [PMID: 38631210 DOI: 10.1016/j.foodchem.2024.139338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The effect of ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) on Lignosus rhinocerotis polysaccharide (LRP) degraded by ultrasound assisted H2O2/Vc system (U-H/V) was investigated. U-H/V broke the molecular chain of LRP and improved the conformational flexibility, decreasing the molecular weight, intrinsic viscosity ([η]) and particle size. The functional groups and hyperbranched structure of LRP were almost stable after U-H/V treatment, however, the triple helix structure of LRP was partially disrupted. With increasing ultrasonic intensity, the critical aggregation concentration increased from 0.59 mg/mL to 1.57 mg/mL, and the hydrophobic microdomains reduced. Furthermore, the LRP treated with U-H/V significantly inhibited HepG2 cell proliferation by inducing apoptosis. The increase in antitumor activity of LRP was closely associated with the reduction of molecular weight, [η], particle size and hydrophobic microdomains. These results revealed that U-H/V treatment facilitates the degradation of LRP and provides a better insight into the structure-antitumor activity relationship of LRP.
Collapse
Affiliation(s)
- Wudan Cai
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Ruotong Guo
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Tang YJ, He WW, Wang X, Jia RQ, Song XX, Yin JY. Ascorbic acid-mediated reduction of arabinoxylan viscosity through free radical reactions. Int J Biol Macromol 2024; 271:132291. [PMID: 38816296 DOI: 10.1016/j.ijbiomac.2024.132291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Arabinoxylan (AX) is a potential natural food additive that can enhance the textural properties of food. However, the addition of ascorbic acid (AA) can easily lead to a decrease in the viscosity of AX, which poses a challenge in the development of AX-rich foods. Therefore, the purpose of this study is to elucidate the mechanisms behind the reduction in AX viscosity in the presence of AA. The results indicated that AA could reduce the apparent viscosity and molecular weight of AX without significantly affecting the monosaccharide composition, suggesting a potential mechanism related to the cleavage of AX glycosidic bonds. Interestingly, free radicals were present in the reaction system, and the generation of free radicals under different conditions was consistent with the reduction in apparent viscosity of AX. Furthermore, the reduction in AX apparent viscosity by AA was influenced by various factors including AA concentration, reaction time, temperature, pH, and metal ions. These findings suggested that the mechanism of AX degradation may be due to AA-induced free radical generation, leading to non-selective attacks on glycosidic bonds. Therefore, this study revealed that the potential mechanism behind the reduction in AX viscosity induced by AA involved the generation of ascorbic acid radicals.
Collapse
Affiliation(s)
- Yu-Jie Tang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Wei-Wei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Run-Qi Jia
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi province 330047, China.
| |
Collapse
|
5
|
Zhu B, Ma C, You L. Degradation Mechanisms of Six Typical Glucosidic Bonds of Disaccharides Induced by Free Radicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5439-5451. [PMID: 38412221 DOI: 10.1021/acs.jafc.3c09344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of β-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < β-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Cong Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
6
|
Wang K, Wang W, Zhang R, Liu Y, Hou C, Guo Y, Zhang C. Preparation of low molecular weight chondroitin sulfate from different sources by H 2O 2/ascorbic acid degradation and its degradation mechanism. Food Chem 2024; 434:137392. [PMID: 37725843 DOI: 10.1016/j.foodchem.2023.137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Low molecular weight chondroitin sulfate (LMCS) has attention for enhanced bioavailability and bioactivity compared to native CS. We optimized H2O2/ ascorbic acid (Vc) degradation conditions to prepare LMCS from chicken, bovine, and shark cartilages. Degradation kinetics models and chemical composition data of LMCS showed the GlcA residues of chondroitin-4-sulfate (CSA) may be preferentially attacked. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) indicated that the CH of GlcA in CS was broken through a hydrogen abstraction reaction to break the β-(1 → 3) bond and form the hexendioic acid product. Standard density functional theory (DFT) calculations indicated that the energy required for the hydrogen abstraction from the C1-H bond in GlcA was lower than that of GalNAc. Molecular dynamics (MD) showed that CSA was more likely to interact with hydroxyl radicals (·OH) than non-sulfated chondroitin (CSO) and chondroitin-6-sulfate (CSC). These results provide guidance for producing LMCS.
Collapse
Affiliation(s)
- Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenfang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruishu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Khaffache R, Dehane A, Merouani S, Hamdaoui O, Ferkous H, Alrashed MM, Gasmi I, Chibani A. Sonochemistry dosimetries in seawater. ULTRASONICS SONOCHEMISTRY 2023; 101:106647. [PMID: 37944338 PMCID: PMC10654036 DOI: 10.1016/j.ultsonch.2023.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Due to the complex physical and chemical interactions taking place in the sonicated medium, various methods have been proposed in the literature for a better understanding of the sonochemical system. In the present paper, the performance of calorimetry, iodometry, Fricke, 4-nitrophenol, H2O2, and ascorbic acid dosimetry techniques have been evaluated over the electric power range from 20 to 80 W (f = 300 kHz). These methods have been analyzed for distilled and seawater in light of the literature findings. It has been found that the lowest temperatures and calorimetric energies were obtained for seawater in comparison to distilled water. However, the discrepancy between both mediums disappears with the increase in the electric power up to 80 W. Compared to the calorimetry results, a similar trend was obtained for the KI dosimetry, where the discrepancy between both solutions (seawater and distilled water) increased with the reduction in the electric power down to 20 W. In contrast, over the whole range of the electric power (20-80 W), the H2O2 dosimetry was drastically influenced by the salt composition of seawater, where, I3- formation was clearly reduced in comparison to the case of the distilled water. On the other hand, a fluctuated behavior was observed for the Fricke and 4-nitrophenol dosimetry methods, especially at the low electric powers (20 and 40 W). It has been found that dosimetry techniques based on ascorbic acid or potassium iodide are the best means for accurate quantification of the sonochemical activity in the irradiated liquid. As a result, it has been concluded, in terms of the dosimetry process's performance, that the dosimetry methods are in the following order: Ascorbic acid ≈ KI > Fricke > 4-nitrophenol > H2O2.
Collapse
Affiliation(s)
- Rabiaa Khaffache
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria.
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Hamza Ferkous
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Maher M Alrashed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Intissar Gasmi
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Atef Chibani
- Research Center in Industrial Technologies CRTI, P.O.Box 64, Cheraga 16014, Algiers, Algeria
| |
Collapse
|
8
|
Zhu B, Sun-Waterhouse D, You L. Insights into the mechanisms underlying the degradation of xylooligosaccharides in UV/H 2O 2 system. Carbohydr Polym 2023; 317:121091. [PMID: 37364944 DOI: 10.1016/j.carbpol.2023.121091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
UV/H2O2 process is increasingly used to degrade carbohydrates, though the underlying mechanisms remain unclear. This study aimed to fill this knowledge gap, focusing on mechanisms and energy consumption involved in hydroxyl radical (•OH)-mediated degradation of xylooligosaccharides (XOSs) in UV/H2O2 system. Results showed that UV photolysis of H2O2 generated large amounts of •OH radicals, and degradation kinetics of XOSs fitted with a pseudo-first-order model. Xylobiose (X2) and xylotriose (X3), main oligomers in XOSs, were attacked easier by •OH radicals. Their hydroxyl groups were largely converted to carbonyl groups and then carboxy groups. The cleavage rate of glucosidic bonds was slightly higher than that of pyranose ring, and exo-site glucosidic bonds were more easily cleaved than endo-site bonds. The terminal hydroxyl groups of xylitol were more efficiently oxidized than other hydroxyl groups of it, causing an initial accumulation of xylose. Oxidation products from xylitol and xylose included ketoses, aldoses, hydroxy acids and aldonic acids, indicating the complexity of •OH radical-induced XOSs degradation. Quantum chemistry calculations revealed 18 energetically viable reaction mechanisms, with the conversion of hydroxy-alkoxyl radicals to hydroxy acids being the most energetically favorable (energy barriers <0.90 kcal/mol). This study will provide more understanding of •OH radicals-mediated degradation of carbohydrates.
Collapse
Affiliation(s)
- Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| |
Collapse
|
9
|
Nguyen THP, Le NAT, Tran PT, Bui DD, Nguyen QH. Preparation of water-soluble chitosan oligosaccharides by oxidative hydrolysis of chitosan powder with hydrogen peroxide. Heliyon 2023; 9:e19565. [PMID: 37681167 PMCID: PMC10480655 DOI: 10.1016/j.heliyon.2023.e19565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Chitosan (CS) is only soluble in weak acid medium, thereby limiting its wide utilisation in the field of biomedicine, food, and agriculture. In this report, we present a method for preparing water-soluble CS oligosaccharides (COSs) at high concentration (∼10%, w/v) via the oxidative hydrolysis of CS powder with molecular weight (Mw) ∼90,000 g/mol) in 2% H2O2 solution at ambient temperature by a two-step process, namely, the heterogeneous hydrolysis step and homogeneous hydrolysis step. The resultant COSs were characterised by gel permeation chromatography (GPC), fourier transforms infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), proton nuclear magnetic resonance spectroscopy (1H NMR) and X-ray diffraction (XRD) spectroscopy. The resulting products were composed of COSs (Mw of 2000-6600 g/mol) that were completely soluble in water. The results also indicated that the structure of COSs was almost unchanged compared with the original CS unless Mw was low. Accordingly, COSs with low Mw (∼2000 g/mol) and high concentration (10%, w/v) could be effectively prepared by the oxidative hydrolysis of CS powder using hydrogen peroxide under ambient conditions.
Collapse
Affiliation(s)
- Trong Hoanh Phong Nguyen
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Vietnam Atomic Energy Institute, Hanoi 10000, Viet Nam
| | - Nghiem Anh Tuan Le
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Phuoc Tho Tran
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Duy Du Bui
- Graduate University of Science and Technology-Vietnam Academy of Science and Technology, Hanoi 10000, Viet Nam
- Institute of Applied Materials Science-Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | | |
Collapse
|
10
|
Xie Y, Xu H, Xu S, Ge S, Chang X, Xu Y, Luo Z, Shan Y, Ding S. How to effectively and greenly prepare multi-scale structural starch nanoparticles for strengthening gelatin film (ultrasound-Fenton system). Int J Biol Macromol 2023; 247:125848. [PMID: 37455003 DOI: 10.1016/j.ijbiomac.2023.125848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Ultrasound (US) assisted with Fenton (US-Fenton) reaction was developed to efficiently and greenly prepare starch nanoparticles (SNPs) that were employed as nanofillers to enhance gelatin (G) film properties. Compared to Fenton reaction alone, US-Fenton reaction significantly improved preparation efficiency and dispersion of SNPs (p < 0.05). An optimal US-Fenton reaction parameter (300 mM H2O2, ascorbic acid 55 mM, US 45 min) was found to prepare SNPs with uniform sizes (50-90 nm) and low molecular weight (Mn 7.91 × 105 Da). The XRD, FT-IR, and SAXS analysis revealed that the US-Fenton reaction degraded the amorphous and crystalline zones of starch from top to down, leading to the collapse of the original layered structure starch and the progressive formation of SNPs. The different sizes of SNPs were selected to prepare the composite films. The G-SNP3 film (with 50-90 nm SNPs) showed the most outstanding UV blocking, tensile, and barrier properties. Especially, the tensile strength of G-5%SNP3 film (containing 5 % SNPs) increased by 156 % and 6 % over that of G film and G-5%SNP2 film (containing 5%SNPs with 100-180 nm), respectively. Therefore, the nanomaterial was promisingly prepared by the US-Fenton system and provided a strategy for designing and producing nanocomposite films.
Collapse
Affiliation(s)
- Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, DongTing Laboratory, Changsha 410125, China.
| |
Collapse
|
11
|
Liu Q, Fang J, Huang W, Liu S, Zhang X, Gong G, Huang L, Lin X, Wang Z. The intervention effects of konjac glucomannan with different molecular weights on high-fat and high-fructose diet-fed obese mice based on the regulation of gut microbiota. Food Res Int 2023; 165:112498. [PMID: 36869507 DOI: 10.1016/j.foodres.2023.112498] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Konjac is a high-quality dietary fiber rich in β-glucomannan, which has been reported to possess anti-obesity effects. To explore the effective components and the structure-activity relationships of konjac glucomannan (KGM), three different molecular weight components (KGM-1 (90 kDa), KGM-2 (5 kDa), KGM-3 (1 kDa)) were obtained, and systematical comparisons of their effects on high-fat and high-fructose diet (HFFD)-induced obese mice were investigated in the present study. Our results indicated that KGM-1, with its larger molecular weight, reduced mouse body weight and improved their insulin resistance status. KGM-1 markedly inhibited lipid accumulation in mouse livers induced by HFFD by downregulating Pparg expression and upregulating Hsl and Cpt1 expressions. Further investigation revealed that dietary supplementation with konjac glucomannan at different molecular weights caused β-diversity changes in gut microbes. The potential weight loss effect of KGM-1 maybe attributed to the abundance of changes in Coprobacter, Streptococcus, Clostridium IV, and Parasutterella. The results provide a scientific basis for the in-depth development and utilization of konjac resources.
Collapse
Affiliation(s)
- Qian Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Fang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Sining Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xueting Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoliang Lin
- Infinitus (China) Company Ltd., Guangzhou 510000, Guangdong, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
12
|
Talukdar H, Saikia G, Das A, Sultana SY, Islam NS. Organic-Solvent-Free Oxidation of Styrene, Phenol and Sulfides with H2O2 over Eco-Friendly Niobium and Tantalum Based Heterogeneous Catalysts. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Xu H, Fu X, Kong H, Chen F, Chang X, Ding Z, Wang R, Shan Y, Ding S. Ultrasonication significantly enhances grafting efficiency of chitosan-ferulic acid conjugate and improves its film properties under Fenton system. Food Res Int 2023; 164:112327. [PMID: 36737920 DOI: 10.1016/j.foodres.2022.112327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Ultrasonication (US)-assisted Fenton-system (US-Fenton) with different US time was developed for synthesizing chitosan (CS)-ferulic acid (FA) conjugates. The optimal US-Fenton for a suitable time was selected for preparing a film with CS-FA conjugate and its structural, functional, rheological, and physical properties were also investigated. Compared with Fenton-system, US-Fenton enhanced the grafting ratio of the conjugates, which increased firstly and then decreased as US time. The conjugate obtained by US-Fenton for 1 min (FUS1) possessed the highest grafting ratio (121.28 mg FA/g) and its grafting time was also shortened from 12 h to 1 min contrasted with Fenton grafted method. Structural characterization results showed that FA was conjugated on CS via ester and amide bonds with decreased crystallinity. Scanning electron microscopy and molecular weight analysis indicated that the degradation degree of CS-FA conjugates increased with US time. The DPPH and ABTS radical-scavenging activities of FUS1 were the closest to ascorbic acid, and it also showed the best antibacterial effect among the test conjugates. Accordingly, FUS1 was selected to obtain the film for contrasting with CS film. FUS1 film solution exhibited a decreased viscosity. In comparison to CS film, UV transmittance of FUS1 film approached zero, and its moisture, oxygen, and carbon dioxide permeabilities significantly decreased (P < 0.05). Moreover, its water solubility and tensile strength increased by 58.09% and 25.72% than those of CS film, respectively. Therefore, US-Fenton for 1 min could be a promising method for efficiently preparing active food package materials and FUS1 film possessed broad application prospects.
Collapse
Affiliation(s)
- Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Zemin Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
14
|
Zhu B, Chen Y, Chang S, Qiu H, You L. Degradation kinetic models and mechanism of isomaltooligosaccharides by hydroxyl radicals in UV/H2O2 system. Carbohydr Polym 2023; 300:120240. [DOI: 10.1016/j.carbpol.2022.120240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022]
|
15
|
Wang Z, Huang J, Yun D, Yong H, Liu J. Antioxidant packaging films developed based on chitosan grafted with different catechins: Characterization and application in retarding corn oil oxidation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Wang K, Qi L, Zhao L, Liu J, Guo Y, Zhang C. Degradation of chondroitin sulfate: Mechanism of degradation, influence factors, structure-bioactivity relationship and application. Carbohydr Polym 2022; 301:120361. [PMID: 36446498 DOI: 10.1016/j.carbpol.2022.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
|
17
|
Chen L, Xie X, Li Y, Xiong H, Li L. Activation mechanism of whey protein isolate mediated by free radicals generated in the ascorbic acid/hydrogen peroxide system. Food Chem 2022; 384:132533. [DOI: 10.1016/j.foodchem.2022.132533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
18
|
Rajasekaran B, Singh A, Nagarajan M, Benjakul S. Effect of chitooligosaccharide and α-tocopherol on physical properties and oxidative stability of shrimp oil-in-water emulsion stabilized by bovine serum albumin-chitosan complex. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Mittal A, Singh A, Zhang B, Visessanguan W, Benjakul S. Chitooligosaccharide Conjugates Prepared Using Several Phenolic Compounds via Ascorbic Acid/H 2O 2 Free Radical Grafting: Characteristics, Antioxidant, Antidiabetic, and Antimicrobial Activities. Foods 2022; 11:920. [PMID: 35407006 PMCID: PMC8997384 DOI: 10.3390/foods11070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Chitooligosaccharide (COS)-polyphenol (PPN) conjugates prepared using different PPNs, including gallic, caffeic, and ferulic acids, epigallocatechin gallate, and catechin, at various concentrations were characterized via UV-visible, FTIR, and 1H-NMR spectra and tested for antioxidant, antidiabetic, and antimicrobial activities. Grafting of PPNs with COS was achieved. The highest conjugation efficiency was noticed for COS-catechin (COS-CAT), which was identified to have the highest total phenolic content (TPC) out of all the conjugates (p < 0.05). For antioxidant activities, DPPH and ABTS radical scavenging activities (DPPH-RSA and ABTS-RSA, respectively), oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and metal chelating activity (MCA) of all the samples were positively correlated with the TPC incorporated. COS-CAT had higher DPPH-RSA, ABTS-RSA, ORAC, and FRAP than COS and all other COS-PPN conjugates (p < 0.05). In addition, COS-CAT also showed the highest antidiabetic activity of the conjugates, as determined by inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase (p < 0.05). COS-CAT also had the highest antimicrobial activity against all tested Gram-negative and Gram-positive bacteria (p < 0.05). Overall, grafting of PPNs, especially CAT on COS, significantly enhanced bioactivities, including antioxidant and antimicrobial, which could be used to retard spoilage and enhance shelf-life of various food systems. Moreover, the ability of COS-CAT to inhibit digestive enzymes reflects its preventive effect on diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (A.M.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (A.M.); (A.S.)
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang 12120, Thailand;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Thailand; (A.M.); (A.S.)
| |
Collapse
|
20
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharides from shrimp shell chitosan prepared using H
2
O
2
or ascorbic acid/H
2
O
2
redox pair hydrolysis: characteristics, antioxidant and antimicrobial activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
21
|
Kurniawan D, Anjali BA, Setiawan O, Ostrikov KK, Chung YG, Chiang WH. Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1670-1683. [PMID: 34843204 DOI: 10.1021/acsami.1c18440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
pH sensing using active nanomaterials is promising in many fields ranging from chemical reactions to biochemistry, biomedicine, and environmental safety especially in the nanoscale. However, it is still challenging to achieve nanotechnology-enhanced rapid, sensitive, and quantitative pH detection with stable, biocompatible, and cost-effective materials. Here, we report a rational design of nitrogen-doped graphene quantum dot (NGQD)-based pH sensors by boosting the NGQD pH sensing properties via microplasma-enabled band-structure engineering. Effectively and economically, the emission-tunable NGQDs can be synthesized from earth-abundant chitosan biomass precursor by controlling the microplasma chemistry under ambient conditions. Advanced spectroscopy measurements and density functional theory (DFT) calculations reveal that functionality-tuned NGQDs with enriched -OH functional groups and stable and large Stokes shift along the variations of pH value can achieve rapid, label-free, and ionic-stable pH sensing with a wide sensing range from pH 1.8 to 13.6. The underlying mechanism of pH sensing is related to the protonation/deprotonation of -OH group of NGQDs, leading to the maximum pH-dependent luminescence peak shift along with the bandgap broadening or narrowing. In just 1 h, a single microplasma jet can produce a stable colloidal NGQD dispersion with 10 mg/mL concentration lasting for at least 100 pH detections, and the process is scalable. This approach is generic and opens new avenues for nanographene-based materials synthesis for applications in sensing, nanocatalysis, energy generation and conversion, quantum optoelectronics, bioimaging, and drug delivery.
Collapse
Affiliation(s)
- Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Bai Amutha Anjali
- School of Chemical Engineering, Pusan National University, 46241 Busan, Korea (South)
| | - Owen Setiawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, 46241 Busan, Korea (South)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
22
|
Ultrasonic Synthesis of Nanochitosan and Its Size Effects on Turbidity Removal and Dealkalization in Wastewater Treatment. INVENTIONS 2021. [DOI: 10.3390/inventions6040098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A detailed study on the synthesis of chitosan nanoparticles under ultrasonication is reported in this paper. By using this simple technique, chitosan particles in nanometer range can be easily prepared without using any harmful and expensive chemicals. The results show that increasing the ultrasonic irradiation time and ultrasonic wave amplitude are the key factors for producing discrete chitosan nanoparticles with narrow particle size distribution. The resulting nanoparticles show superior turbidity removal efficiency (75.4%) and dealkalization (58.3%) in wastewater treatment than the bulk chitosan solid (35.4% and 11.1%, respectively), thus offering an eco-friendly and promising approach for treating wastewater via the coagulation/flocculation process.
Collapse
|
23
|
Ma C, Bai J, Shao C, Liu J, Zhang Y, Li X, Yang Y, Xu Y, Wang L. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products. Food Res Int 2021; 143:110281. [DOI: 10.1016/j.foodres.2021.110281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
|
24
|
Xing R, Xu C, Gao K, Yang H, Liu Y, Fan Z, Liu S, Qin Y, Yu H, Li P. Characterization of Different Salt Forms of Chitooligosaccharides and Their Effects on Nitric Oxide Secretion by Macrophages. Molecules 2021; 26:molecules26092563. [PMID: 33924816 PMCID: PMC8125739 DOI: 10.3390/molecules26092563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, chitooligosaccharides in different salt forms, such as chitooligosaccharide lactate, citrate, adipate, etc., were prepared by the microwave method. They were characterized by SEM, FTIR, NMR, etc., and the nitric oxide (NO) expression was determined in RAW 264.7 cells. The results showed that pure chitooligosaccharide was an irregular spherical shape with rough surface, and its different salt type products are amorphous solid with different honeycomb sizes. In addition to the characteristic absorption peaks of chitooligosaccharides, in FTIR, the characteristic absorption of carboxyl group, methylene group, and aromatic group in corresponding acid appeared. The characteristic absorption peaks of carbon in carboxyl group, hydrogen and carbon in methyl, methylene group, and aromatic group in corresponding acid also appeared in NMR. Therefore, the sugar ring structure and linking mode of chitooligosaccharides did not change after salt formation of chitooligosaccharides. Different salt chitooligosaccharides are completely different in promoting NO secretion by macrophages, and pure chitooligosaccharides are the best.
Collapse
Affiliation(s)
- Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- Correspondence: ; Tel.: +86-532-82898780
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Yongliang Liu
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; (C.X.); (K.G.); (H.Y.); (Z.F.); (S.L.); (Y.Q.); (H.Y.); (P.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China;
| |
Collapse
|
25
|
Li M, Xie R, Liu J, Gan L, Long M. Preparation of chitooligosaccharide acetate salts with narrow molecular size distribution and the antioxidative activity. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Wei X, Li Q, Hao H, Yang H, Li Y, Sun T, Li X. Preparation, physicochemical and preservation properties of Ti/ZnO/in situ SiOx chitosan composite coatings. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:570-577. [PMID: 31588994 DOI: 10.1002/jsfa.10048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Among nanomaterials, Ti and ZnO nanoparticles are often chosen as preservation materials because of their antibacterial properties. Chitosan, as a natural biopolymer, has potential because of its abundance, compatibility and antibacterial properties. To improve the physicochemical and preservation properties of in situ SiOx chitosan (CS) composite coating, Ti/ZnO/SiOx CS composite coatings were prepared with Ti-doped ZnO (Ti/ZnO) nanorods and nanoballs. The composite coating structures were characterized by Fourier transform infrared, X-ray diffraction and scanning electron microscopy, and their physicochemical and preservation properties were determined simultaneously. RESULTS The results show that the Ti/ZnO nanoparticles are beneficial to homogeneous dispersion of in situ synthesized nano SiOx in the CS coating, and that Ti/ZnO nanoballs have better dispersion than Ti/ZnO nanorods. Moreover, strong hydrogen bonds are formed among Ti/ZnO nanoparticles and in situ synthesized nano SiOx and CS molecules, and the primary structure of CS is disorganized. Thereby, the gas permeabilities and mechanical properties of the CS coatings are improved due to modification of Ti/ZnO nanoparticles, and the Ti/ZnO nanoballs/SiOx CS composite coating is optimal. The preservation properties of the CS coatings on Sciaenops ocellatus are significantly improved, and those of Ti/ZnO/in situ SiOx CS composite coatings are superior. CONCLUSION The preservation properties of the CS composite coatings on S. ocellatus are significant, and the Ti/ZnO nanoballs/SiOx CS composite coating is even better. Therefore, the co-modification method of in situ nanoparticles and antibacterial nanoparticles may be a promising method to improve the preservation properties of CS coatings. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuqing Wei
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- College of Food Science and Engineering, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Han Hao
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Hebei Huaqing Environmental Protection Technology Group Co., Ltd., Shijiazhuang, China
| | - Hua Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- College of Food Science and Engineering, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Yingchang Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- College of Food Science and Engineering, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- College of Food Science and Engineering, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- College of Food Science and Engineering, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou, China
| |
Collapse
|
27
|
Zhou D, Shen D, Lu W, Song T, Wang M, Feng H, Shentu J, Long Y. Production of 5-Hydroxymethylfurfural from Chitin Biomass: A Review. Molecules 2020; 25:molecules25030541. [PMID: 32012651 PMCID: PMC7036796 DOI: 10.3390/molecules25030541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/12/2023] Open
Abstract
Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and N-acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.
Collapse
Affiliation(s)
- Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China;
| | - Tao Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Analysis and Testing Center, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; (D.Z.); (D.S.); (M.W.); (H.F.); (J.S.)
- Correspondence:
| |
Collapse
|
28
|
Wu Y, Monfort O, Dong W, Brigante M, Mailhot G. Enhancement of iron-mediated activation of persulfate using catechin: From generation of reactive species to atenolol degradation in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134188. [PMID: 31491635 DOI: 10.1016/j.scitotenv.2019.134188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Persulfate (PS) activation reaction, which forms sulfate radical (SO4-), can be used to degrade organic pollutants in water. However, a drawback of this reaction is that the regeneration of ferrous ions requires a high concentration of hydrogen peroxide (Fenton-like reaction) or use of UV radiation. Catechin (CAT), a non-toxic antioxidant of natural origin from tea, is used in this work to improve the sulfate radical-mediated degradation of atenolol (ATL, a model pollutant) in water using relatively low concentrations of reactive chemical species (less than 100 μM). To the best of the author's knowledge, the direct effect of CAT on the oxidation state of iron, which is promoted by the reduction of ferric into ferrous ions with the enhancement of SO4- formation in the presence of PS, is demonstrated for the first time. The enhancement versus inhibition effect of CAT and the chemical mechanism of the iron-based activation process are explained. Results show that UVA radiation, which is representative of solar light, accelerates the initial degradation of ATL by more than 30% through ferric iron photolysis. Finally, a reaction mechanism leading to the formation of hydroxyl radicals (HO) and SO4- is proposed considering the implication of different activation/reaction chemical steps.
Collapse
Affiliation(s)
- Yanlin Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Olivier Monfort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
29
|
Li M, Han J, Xue Y, Dai Y, Liu J, Gan L, Xie R, Long M. Hydrogen peroxide pretreatment efficiently assisting enzymatic hydrolysis of chitosan at high concentration for chitooligosaccharides. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Shen X, Liu Z, Li J, Wu D, Zhu M, Yan L, Mao G, Ye X, Linhardt RJ, Chen S. Development of low molecular weight heparin by H 2O 2/ascorbic acid with ultrasonic power and its anti-metastasis property. Int J Biol Macromol 2019; 133:101-109. [PMID: 30954594 DOI: 10.1016/j.ijbiomac.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/15/2023]
Abstract
Low molecular weight heparins (LMWHs) are currently used as an anticoagulant agent since unfractionated heparin (UFH) can cause serious adverse drug reactions. LMWHs are commercially prepared using different methods such as nitrous acid cleavage and β-elimination under strong reaction conditions or with harsh chemicals, which may cause the saccharide units within the polysaccharide backbone to be decomposed and noticeably modified. This study demonstrates an effective method for depolymerizing heparin via the production of large amounts of free radicals from H2O2/ascorbic acid and ultrasonic power; this results in highly pure products because ascorbic acid can decompose during the reaction, which is different from the previously reported H2O2/Cu2+ method. The reaction conditions-including concentration of ascorbic acid, reaction temperature and intensity of ultrasonic power-were investigated and optimized. We found that the degradation behavior of heparin in this combined physicochemical process conformed to first-order reaction kinetics. The chemical composition and structures of different LMWHs were analyzed. The results showed the primary structure and sulfate esters were well preserved after the depolymerization, the major repeat units are (1-4)-linked glucosamine and iduronic acid. The further in vitro assays indicated that the LMWHs produced by H2O2/ascorbic acid with ultrasonic power have an anti-metastatic effect in A549 cells, which suggested the LMWHs rapidly prepared in this physicochemical way have a potential for anti-tumor metastatic function.
Collapse
Affiliation(s)
- Xuemin Shen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhenfeng Liu
- Institute of Health Products, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310023, China
| | - Junhui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Wu
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Meng Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lufeng Yan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guizhu Mao
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Shiguo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
31
|
Saikia G, Ahmed K, Gogoi SR, Sharma M, Talukdar H, Islam NS. A chitosan supported peroxidovanadium(V) complex: Synthesis, characterization and application as an eco-compatible heterogeneous catalyst for selective sulfoxidation in water. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Wang W, Chen W, Zou M, Lv R, Wang D, Hou F, Feng H, Ma X, Zhong J, Ding T, Ye X, Liu D. Applications of power ultrasound in oriented modification and degradation of pectin: A review. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Chokradjaroen C, Theeramunkong S, Yui H, Saito N, Rujiravanit R. Cytotoxicity against cancer cells of chitosan oligosaccharides prepared from chitosan powder degraded by electrical discharge plasma. Carbohydr Polym 2018; 201:20-30. [PMID: 30241811 DOI: 10.1016/j.carbpol.2018.08.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Abstract
Chitosan oligosaccharides, which obtain from degradation of chitosan, possess some interesting molecular weight-dependent biological properties, especially anticancer activity. Therefore, the conversion of chitosan to chitosan oligosaccharides with specific molecular weight has been continuously investigated in order to find effective strategies that can achieve both economic feasibility and environmental concerns. In this study, a novel process was developed to heterogeneously degrade chitosan powder by highly active species generated by electrical discharge plasma in a dilute salt solution (0.02 M) without the addition of other chemicals. The degradation rate obtained from the proposed process was comparable to that obtained from some other methods with the addition of acids and oxidizing agents. Separation of the water-soluble degraded products containing chitosan oligosaccharides from the reaction solution was simply done by filtration. The obtained chitosan oligosaccharides were further evaluated for an influence of their molecular weights on cytotoxicity against cancer cells and the selectivity toward cancer and normal cells.
Collapse
Affiliation(s)
| | | | - Hiroharu Yui
- Department of Chemistry, Tokyo University of Science, Tokyo 162-8601, Japan; Water Frontier Science & Technology Research Center, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Ratana Rujiravanit
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
34
|
Liu J, Pu H, Zhang X, Xiao L, Kan J, Jin C. Effects of ascorbate and hydroxyl radical degradations on the structural, physicochemical, antioxidant and film forming properties of chitosan. Int J Biol Macromol 2018; 114:1086-1093. [DOI: 10.1016/j.ijbiomac.2018.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 02/05/2023]
|
35
|
Mou J, Wang C, Li Q, Qi X, Yang J. Preparation and antioxidant properties of low molecular holothurian glycosaminoglycans by H2O2/ascorbic acid degradation. Int J Biol Macromol 2018; 107:1339-1347. [DOI: 10.1016/j.ijbiomac.2017.10.161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
|