1
|
Jiang XX, Li P, Zhao MY, Chen RC, Wang ZG, Xie JX, Lv YK. In situ encapsulation of SQDs by zinc ion-induced ZIF-8 growth strategy for fluorescent and colorimetric dual-signal detection of alkaline phosphatase. Anal Chim Acta 2022; 1221:340103. [DOI: 10.1016/j.aca.2022.340103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
|
2
|
Zhang Y, Tian X, Zhang Z, Tang N, Ding Y, Wang Y, Li D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121023. [PMID: 35182922 DOI: 10.1016/j.saa.2022.121023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In order to prepare a kind of efficient fluorescence sensors for determination of cis-diol-containing flavonoids, novel imprinted quantum dots for myricetin (Myr) were prepared based on boronate affinity-based template-immobilization surface imprinting. The obtained boronate affinity-based surface imprinted silica (imprinted APBA-functionalized CdTe QDs) was used as recognition elements. The quantum dots were used as signal-transduction materials. Under the optimum conditions, according to fluorescence quenching of imprinted APBA-functionalized CdTe QDs by Myr, the imprinting factor (IF) for Myr was evaluated to be 7.88. The result indicated that the boronate affinity functionalized quantum dots coated with imprinted silica were successfully prepared. The prepared imprinted APBA-functionalized CdTe QDs exhibited good sensitivity and selectivity for Myr. The fluorescence intensity was inversely proportional to the concentration of Myr in the 0.30-40 μM concentration range. And its detection limit was obtained to be 0.08 μM. Using the fluorescence sensors, the detection of Myr in real samples was successfully carried out, and the concentration of Myr in green tea and apple juice samples was evaluated to be 2.26 mg/g and 0.73 mg/g, respectively. The recoveries for the spiked green tea and apple juice samples were 95.2-105.0% and 91.5-111.0%, respectively. This study also provides an efficient fluorescent detection method for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| |
Collapse
|
3
|
Wang K, Dong E, Fang M, Chen T, Zhu W, Li C. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Wu M, Wang N, Lin Z, Su X. Development of carbon dot-thiochrome-based sensing system for ratiometric fluorescence detection of D-penicillamine. Anal Bioanal Chem 2021; 413:5779-5787. [PMID: 34312692 DOI: 10.1007/s00216-021-03552-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
A simple and rapid ratiometric fluorescent sensing system for D-penicillamine (D-PA) determination is developed based on yellow carbon dots (Y-CDs) combined with thiochrome (oxVB1) for the first time. The oxidization of thiamine (VB1) can be catalyzed by Alkaline-hydrolyzed artemisinin (a-ART) to form oxVB1, which leads to the occurrence of fluorescence emission peak at 466 nm. Furthermore, the oxidation reaction between a-ART and VB1 could be inhibited by D-PA, and accompanied with the decrease of fluorescence at 466 nm. However, the fluorescence peak of Y-CDs as an internal reference at 566 nm was almost unchanged. The ratiometric signal changes contributed to a robust and sensitive D-PA sensing. Under the optimal condition, a good linear response for the D-PA detection was obtained in the ranges of 0.5-50 μM with a detection limit of 0.33 μM. In addition, Y-CDs and thiochrome-based sensing system was applied to D-PA determination in real samples and obtained acceptable results. We developed a new carbon dots/thiochrome fluorescent nanoprobe for ratiometric fluorescence sensing of D-penicillamine.
Collapse
Affiliation(s)
- Maolin Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zihan Lin
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
5
|
Hao AY, Wang XQ, Mei YZ, Nie JF, Yang YQ, Dai CC. A smartphone-combined ratiometric fluorescence probe for specifically and visibly detecting cephalexin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119310. [PMID: 33338937 DOI: 10.1016/j.saa.2020.119310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
A smartphone-combined dual-emission ratiometric fluorescence probe for specifically and visibly detecting cephalexin was first designed. In the probe, blue-emitting fluorescent carbon dots (CDs) was synthesized and covered with a layer of silica spacer. Red-emitting fluorescent CdTe QDs (r-QDs) was grafted onto the silica nanospheres as an analytical probe. Then, the cephalexin antibody was covalent grafted to the ratio sensor to increase the selectivity. The ratio of fluorescence intensity (FL) of r-QDs and CDs was quenched with the increasing concentration of cephalexin. The detection method has good linear response in the range of 1-500 μM and the detection limit was 0.7 μM. Then portable device based on smartphone detection was constructed according to the color change under UV lamp. The detection image was obtained through the smartphone camera, and the color picker APP installed in the smartphone captured the RGB value of the image. In addition, this method was also used to determine the amount of cephalexin in milk samples with recovery of 94.1%-102.2%. These results showed that it was a portable, simple and visible method to detect cephalexin in food analysis and environmental monitoring.
Collapse
Affiliation(s)
- Ai-Yue Hao
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xue-Qing Wang
- College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yan-Zhen Mei
- College of Life Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jun-Fang Nie
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, PR China
| | - Ya-Qiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chuan-Chao Dai
- College of Life Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213686] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Zhu R, Lai M, Zhu M, Liang H, Zhou Q, Li R, Zhang W, Ye H. A functional ratio fluorescence sensor platform based on the graphene/Mn-ZnS quantum dots loaded with molecularly imprinted polymer for selective and visual detection sinapic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118845. [PMID: 32882656 DOI: 10.1016/j.saa.2020.118845] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 05/20/2023]
Abstract
A functional ratio fluorescence sensor based on the molecularly imprinted polymer (MIP) coated double quantum dots (QDs) being composited of Mn-ZnS QDs and silica-coated graphene quantum dots (GQDs@SiO2) had been established for the sensitive, selective and visual detection of sinapic acid (SA). MIPs@Mn-ZnS/GQDs@SiO2 was synthesized through a simple one-pot sol-gel reaction, and it exhibited two fluorescence emission peaks with yellow fluorescence of Mn-ZnS QDs at 580 nm and the blue fluorescence of GQDs at 445 nm. SA can selectively enhance the fluorescence of GQDs but quench the Mn-ZnS QDs fluorescence to the MIPs@Mn-ZnS/GQDs@SiO2. The ratio of fluorescence enhancement to fluorescence reduction is linear with the concentration of SA from 9 to 81 nM with the detection limits of 0.8388 nM (S/N = 3). And the constructed fluorescent probe can also be used to visually detect SA according to the change of color. More importantly, molecular imprinting technique enables the sensors to selectively recognize the SA while other similar structure molecules hardly interfere with the SA determination in the measurement environment. Meanwhile, the fluorescence sensors have the advantages of fast response time and long duration of fluorescence intensity. These excellent performances made the proposed method to be applied for the determination of SA in Semen Sinapis and Descurainiae Semen.
Collapse
Affiliation(s)
- Rongkun Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Mushen Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China.
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Qing Zhou
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Xie S, Li X, Wang L, Zhu F, Zhao X, Yuan T, Liu Q, Chen X. High quantum-yield carbon dots embedded metal-organic frameworks for selective and sensitive detection of dopamine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Fluorometric detection of dopamine based on 3-aminophenylboronic acid-functionalized AgInZnS QDs and cells imaging. Talanta 2020; 217:121081. [PMID: 32498860 DOI: 10.1016/j.talanta.2020.121081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Herein, cysteine capped AgInZnS QDs (Cys-AIZS QDs) with a large stoke shift and excellent biocompatibility were synthesized by a one-step aqueous method, followed by modified with 3-aminophenylboronic acid (APBA). Dopamine (DA) as an important neurotransmitter in brain can lead to significantly decrease in the fluorescence intensity of 3-aminophenylboronic acid-functionalized Cys-AIZS QDs (APBA-AIZS QDs) in a large concentration range of 1.5-900 μM. Good linearity can be obtained in the range of 15-120 μM, with a limit of detection (LOD) of 0.65 μM. Moreover, Cys-AIZS QDs and APBA-AIZS QDs were applied to living cells imaging, and Cys-AIZS QDs were applied to the co-localization with lysosomes, indicative of the feasibility of intracellular detection.
Collapse
|
10
|
Li D, Zhai S, Song R, Liu Z, Wang W. Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117542. [PMID: 31685427 DOI: 10.1016/j.saa.2019.117542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 05/11/2023]
Abstract
Novel boronate affinity imprinted quantum dots (BA-CdTe@MIPs QDs) were used to develop a selective and sensitive fluorescent nanosensor for determination of cis-diol-containing flavonoids such as quercetin (Qu), baicalein (Bai) and luteolin (Lut) based on controllable oriented surface imprinting approach. The boronate affinity imprinted silica was used as recognition elements. Under the optimum conditions, the imprinting factor (IF) for Qu, Bai and Lut was evaluated to be 9.42, 6.58 and 10.91, respectively. The results indicated that the boronate affinity quantum dots coated with imprinted silica were successfully prepared. The obtained BA-CdTe@MIPs QDs provided high selectivity and high sensitivity for cis-diol-containing flavonoids such as quercetin and luteolin. The BA-CdTe@MIPs QDs exhibited linear decrease in fluorescence intensity with the increase of concentration of quercetin in the 0.05-25 μM concentration range. The detection limit (LOD) is evaluated to be 0.02 μM. The obtained fluorescent nanosensor could be successfully applied to efficient detection of cis-diol-containing flavonoids in onion skin and human urine samples. The recoveries for the spiked onion skin and urine samples were evaluated to be 83.50-104.00% and 86.67-105.00%, respectively. Clearly, this study provides a rapid and efficient fluorescent detection tool for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China.
| | - Simeng Zhai
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Rumeng Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Zheyao Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| |
Collapse
|
11
|
Fantozzi N, Pétuya R, Insuasty A, Long A, Lefevre S, Schmitt A, Robert V, Dutasta JP, Baraille I, Guy L, Genin E, Bégué D, Martinez A, Pinet S, Gosse I. A new fluorescent hemicryptophane for acetylcholine recognition with an unusual recognition mode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02794d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ammonium of the target interacts with the south part of the hemicryptophane probably because the cyclotriveratrylene's electronic density is altered by the extension of conjugation.
Collapse
|
12
|
Yang YZ, Xiao N, Cen YY, Chen JR, Liu SG, Shi Y, Fan YZ, Li NB, Luo HQ. Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117300. [PMID: 31284240 DOI: 10.1016/j.saa.2019.117300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Copper is an essential mineral nutrient for the human body. However, excessive levels of copper accumulated in the body can cause some diseases. Therefore, it is great significant to establish a sensitive bioprobe to recognize copper ions (Cu2+) in vivo. In our work, nitrogen-doped carbon dots (N-CDs) and gold nanoclusters (Au NCs) are selected as luminescent nanomaterials and the Au NCs/N- CDs nanohybrids is successfully synthesized by coupling method. The Au NCs/N-CDs exhibited characteristic dual-emission peaks at 450 and 620 nm when excited by a single-wavelength of 380 nm. When different amounts of Cu2+ are introduced, the fluorescence intensity of the Au NCs is gradually weakened and fluorescence intensity of the N-CDs is almost unchanged, which can facilitate the visual detection of Cu2+. The Au NCs/N-CDs nanohybrid possesses good selectivity to Cu2+ with a limit of detection (LOD) is 3.5 μM and linear detection range of 10-150 μM. Visualization detection of Cu2+ is implemented by using nanoprobe in water samples. Furthermore, the ratiometric nanoprobe is utilized to the toxicity test of liver cancer cells, indicating excellent biocompatibility and low toxicity. This nanoprobe has been used to the intracellular fluorescence imaging. Moreover, this method is expected to be used to monitor the changes of Cu2+ concentration in hepatocytes.
Collapse
Affiliation(s)
- Yu Zhu Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Na Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Yan Cen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, Guizhou 563000, PR China
| | - Jing Rong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shi Gang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan Shi
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Zhu Fan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
13
|
Kanagasubbulakshmi S, Kadirvelu K. Photoinduced holes transfer based visual determination of dopamine in human serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:512-519. [PMID: 30176427 DOI: 10.1016/j.saa.2018.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
A simple unexplored strategy was followed to construct ratiometric fluorescence-based sensing system for the detection of dopamine (DA) in human serum. Ratiometric fluorescence system was constructed through bonding energy transfer (TBET) by conjugating carboxyl functionalized CdTe quantum dots (QDs) and amine-capped Carbon quantum dots (CQDs). The photophysical properties of sensing system were characterized by standard methods. Photoluminescence (PL) of sensing system under excitonic wavelength (350 nm) depends on dual emission at 440 and 595 nm that corresponds to CQDs and CdTe QDs respectively. The developed sensing system was utilized for visual determination of DA, an unquenched blue fluorescence of CQDs in ratiometric system reveals the visual color differentiation for DA binding with CdTe QDs among the possible interferences (Alanine, Glycine, Glucose, Sucrose, Urea and Ascorbic acid). The limit of detection (LOD) and quantification (LOQ) was calculated as 8.1 and 27.2 nm respectively by using regression analysis. Photoinduced holes transfer (PHT) might have attributed the possible sensing mechanism for DA that quench the photoluminescence sequentially to enhance the sensing performance of QDs. The matrix interferences and reliability of the developed sensing platform were evaluated by testing DA spiked human serum and the sensing response was found to be field deployable.
Collapse
Affiliation(s)
- S Kanagasubbulakshmi
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India
| | - K Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
14
|
Du Q, Wu P, Dramou P, Chen R, He H. One-step fabrication of a boric acid-functionalized lanthanide metal–organic framework as a ratiometric fluorescence sensor for the selective recognition of dopamine. NEW J CHEM 2019. [DOI: 10.1039/c8nj05318a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A boric acid-functionalized Eu-MOF ratiometric fluorescence sensor was prepared for the selective recognition of dopamine.
Collapse
Affiliation(s)
- Qiuzheng Du
- Department of Analytical Chemistry, China Pharmaceutical University
- Nanjing 211198
- China
| | - Pu Wu
- Department of Analytical Chemistry, China Pharmaceutical University
- Nanjing 211198
- China
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University
- Nanjing 211198
- China
| | - Rong Chen
- Department of Analytical Chemistry, China Pharmaceutical University
- Nanjing 211198
- China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
15
|
Chen L, Xu Y, Sun L, Zheng J, Dai J, Li C, Yan Y. Convenient Determination of Sulfamethazine in Milk by Novel Ratiometric Fluorescence with Carbon and Quantum Dots with On-site Naked-eye Detection and Low Interferences. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1402336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yeqing Xu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Sun
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiahong Zheng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
- School of Materials Science and Engineering, Chang’an University, Xi’an, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Fabrication and characterization of poly 2-napthol orange film modified electrode and its application to selective detection of dopamine. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3604-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|