1
|
Srinivasan S, Charan Raja MR, Kar A, Ramasamy A, Jayaraman A, Vadivel V, Kar Mahapatra S. Partial characterization of purified glycoprotein from nutshell of Arachis hypogea L. towards macrophage activation and leishmaniacidal activity. Glycoconj J 2023; 40:1-17. [PMID: 36595117 DOI: 10.1007/s10719-022-10096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/13/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Arachis hypogea L. protein fraction-2 (AHP-F2) from the Peanut shell was extracted and characterized and its potent immunomodulatory and anti-leishmanial role was determined in this present study. AHP-F2 was found to be a glycoprotein as the presence of carbohydrates were confirmed by the analysis of high-performance liquid chromatography (HPLC) yielded glucose, galactose, mannose, and xylose. AHP-F2 molecular mass was found to be ∼28 kDa as indicated in MALDI-TOF and peptide mass fingerprinting analysis followed by Mascot search. The peptide matches revealed the similarity of the mannose/glucose binding lectin with 71.07% in the BLAST analysis. After that, the 3D structure of the AHP-F2 model was designed and validated by the Ramachandran plot. The immunomodulatory role of AHP-F2 was established in murine peritoneal macrophages as induction of nitric oxide (NO), and stimulation of proinflammatory cytokines (IL-12 and IFN-γ) in a dose-dependent manner was observed. Interestingly, it was also found that AHP-F2 has interacted with the innate immune receptor, toll-like receptors (TLRs) as established in molecular docking as well as mRNA expression. The anti-leishmanial potential of AHP-F2 was revealed with a prominent inhibition of amastigote growth within the murine macrophages with prompt induction of nitrite release. Altogether, the isolated AHP-F2 from Arachis hypogea L. has strong immunomodulatory and anti-leishmanial potential which may disclose a new path to treat leishmaniasis.
Collapse
Affiliation(s)
- Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 600 077, Chennai, India
| | - Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Aishwarya Ramasamy
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Vellingiri Vadivel
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, 613 401, Thanjavur, India.
- Department of Paramedical and Allied Health Sciences, Midnapore City College, West Bengal, 721129, Midnapore, India.
| |
Collapse
|
2
|
Isolation and characterization of glycoprotein (CNP) isolated from Cocos nucifera L. nutshell and its immunomodulatory role on macrophage activation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
De Freitas JH, Bragato JP, Rebech GT, Costa SF, Dos Santos MO, Soares MF, Eugênio FDR, Dos Santos PSP, De Lima VMF. MicroRNA-21 and microRNA-148a affects PTEN, NO and ROS in canine leishmaniasis. Front Genet 2023; 14:1106496. [PMID: 37124626 PMCID: PMC10137164 DOI: 10.3389/fgene.2023.1106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Canine Visceral leishmaniasis (CanL) poses a severe public health threat in several countries. Disease progression depends on the degree of immune response suppression. MicroRNAs (miRs) modulate mRNA translation into proteins and regulate various cellular functions and pathways associated with immune responses. MiR-21 and miR-148a can alter the parasite load and M1 macrophages are the principal cells in dogs' leishmanicidal activity. A previous study found increased miR-21 and miR-148a in splenic leukocytes (SL) of dogs with CanL using microarray analysis and in silico analysis identified PTEN pathway targets. PTEN is involved in the immune regulation of macrophages. We measured PTEN and the production of reactive oxygen species (ROS) and nitric oxide (NO) before and after transfection SLs of dogs with CanL with mimic and inhibition of miR-21 and miR-148a. PTEN levels increased, NO and ROS decreased in SLs from dogs with CanL. Inhibition of miRNA-21 resulted in PTEN increase; in contrast, PTEN decreased after miR-148a inhibition. Nitrite (NO2) levels increased after transfection with miR-21 inhibitor but were decreased with miR-148a inhibitor. The increase in miR-21 promoted a reduction in ROS and NO levels, but miR-148a inhibition increased NO and reduced ROS. These findings suggest that miR-21 and miR-148a can participate in immune response in CanL, affecting PTEN, NO, and ROS levels.
Collapse
|
4
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
5
|
The anti-Leishmania potential of bioactive compounds derived from naphthoquinones and their possible applications. A systematic review of animal studies. Parasitol Res 2022; 121:1247-1280. [PMID: 35190878 DOI: 10.1007/s00436-022-07455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/26/2022] [Indexed: 12/09/2022]
Abstract
Leishmaniasis affects millions of people worldwide, and available treatments have severe limitations. Natural and derivative products are significant sources of innovative therapeutic agents. Naphthoquinones are natural or synthetic chemical compounds with broad biological activity. This systematic review aimed to evaluate the potential anti-Leishmania activity of bioactive compounds derived from naphthoquinones in animal models. Conducted in accordance with PRISMA guidelines, two blocks of MeSH terms were assembled: group I, Leishmania OR Leishmaniasis; group II, Atovaquone OR Lapachol OR Beta lapachone OR Naphthoquinones. The search was performed on PubMed, Web of Science, SCOPUS, EMBASE, and Lilacs databases. Twenty-four articles were retrieved and submitted for quality assessment using the SYRCLE critical appraisal tool. The in vivo anti-Leishmania potential of naphthoquinones was evaluated in visceral and cutaneous leishmaniasis using several measurement parameters. Analyzed compounds varied in structure, association with reference drugs, and encapsulation using a drug delivery system. The study design, including treatment protocol, differed between studies. The findings of the studies in this systematic review indicate the anti-Leishmania potential of naphthoquinones in vivo, with different treatment regimens directed against different Leishmania species. The employed drug delivery systems improve the results concerning selectivity, distribution, and required therapeutic dose. The immunomodulatory action was shown to be beneficial to the host, favoring an adequate immune response against infection by Leishmania parasites since it favored Th1 responses. All studies presented a moderate to high risk of bias. These findings suggest that more studies are needed to assess the overall effectiveness and safety of these treatments.
Collapse
|
6
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
7
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
8
|
Vukic MD, Vukovic NL, Popovic SL, Todorovic DV, Djurdjevic PM, Matic SD, Mitrovic MM, Popovic AM, Kacaniova MM, Baskic DD. Effect of β-cyclodextrin encapsulation on cytotoxic activity of acetylshikonin against HCT-116 and MDA-MB-231 cancer cell lines. Saudi Pharm J 2019; 28:136-146. [PMID: 31920439 PMCID: PMC6950963 DOI: 10.1016/j.jsps.2019.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/29/2019] [Indexed: 12/02/2022] Open
Abstract
Acetylshikonin (AcSh), as a red colored pigment found in roots of the plants from family Boraginaceae, showed excellent cytotoxic activity. Due to its hydrophobic nature, and thus poor bioavailability, the aim of this study was to prepare acetylshikonin/β-cyclodextrin (AcSh/β-CD) inclusion complex by using coprecipitation method, characterize obtained system by using UV/VIS, IR and 1H NMR spectroscopy, and determine cytotoxic activity. Phase solubility test indicated formation of AL-type binary system (substrate/ligand ratio was 1:1 M/M), with stability constant Ks of 306.01 M−1. Formation of noncovalent bonds between inner layer of the hole of β-CD and AcSh was observed using spectroscopic methods. Notable changes in chemical shifts of two protons (−0.020 ppm) from naphthoquinone moiety (C6-H and C7-H), as well as protons from hydroxyl groups (−0.013 and −0.009, respectively) attached to C5 and C8 carbons from naphthoquinone part indicate that the molecule of AcSh enters the β-CD cavity from the aromatic side. Cytotoxic activity against HCT-116 and MDA-MB-231 cell lines was measured by MTT test and clonogenic assay. Mechanisms of action of free AcSh and inclusion complex were assessed by flow cytometry. In comparison to free AcSh, AcSh/β-CD showed stronger short-term effect on HCT-116 cells and superior long-term effect on both cell lines. Inclusion complex induced more pronounced cell cycle arrest and autophagy inhibition, and induced increase in accumulation of intracellular ROS more effectively than free AcSh. In conclusion, AcSh/β-CD binary system showed better performances regarding cytotoxic activity against tested tumor cell lines.
Collapse
Affiliation(s)
- Milena D Vukic
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovica 12, 34000 Kragujevac, Serbia
| | - Nenad L Vukovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovica 12, 34000 Kragujevac, Serbia
| | - Suzana Lj Popovic
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Danijela V Todorovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Predrag M Djurdjevic
- University of Kragujevac, Faculty of Medical Sciences, Department of Internal Medicine, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sanja D Matic
- University of Kragujevac, Faculty of Medical Sciences, Doctoral Academic Studies, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina M Mitrovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ana M Popovic
- Master Academic Studies, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Miroslava M Kacaniova
- Department of Fruit Sciences, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia.,Department of Bioenergy and Food Technology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, PL-35601 Rzeszow, Poland
| | - Dejan D Baskic
- University of Kragujevac, Faculty of Medical Sciences, Department of Genetics, Svetozara Markovica 69, 34000 Kragujevac, Serbia.,Public Health Institute, Nikole Pašića 1, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Charan Raja MR, Velappan AB, Chellappan D, Debnath J, Kar Mahapatra S. Eugenol derived immunomodulatory molecules against visceral leishmaniasis. Eur J Med Chem 2017; 139:503-518. [DOI: 10.1016/j.ejmech.2017.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
10
|
Raja MRC, Vinod Kumar V, Srinivasan V, Selvaraj S, Radhakrishnan N, Mukundan R, Raghunandan S, Anthony SP, Kar Mahapatra S. ApAGP-fabricated silver nanoparticles induce amendment of murine macrophage polarization. J Mater Chem B 2017; 5:3511-3520. [PMID: 32264287 DOI: 10.1039/c6tb02095j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
M2 polarization of macrophages is predominant in case of tumors and some other infectious diseases for disease progression. Repolarization of the M2 phenotype to the M1 state may be required to cure diseases. Hence, it is of great interest to find out a material that would repolarize the M2 phenotype to the M1 state. Herein, the arabinogalactan protein from Andrographis paniculata (ApAGP) was used to prepare a silver nanoparticle-ApAGP (SNP-ApAGP) bioconjugate, which was characterized via UV-vis spectroscopy, zeta potential analysis, FT-IR spectroscopy, and HR-TEM. Studies suggest that SNP-ApAGP (2.5 μg mL-1) up-regulates ROS generation, NO generation, and pro-inflammatory cytokine release (IL-12, IFN-γ, TNF-α, and IL-6). SNP-ApAGP also down-regulates the arginase-1 activity and anti-inflammatory cytokine release (IL-4 & IL-10) in M0, M1, and M2-polarized peritoneal macrophages in vitro. Therefore, SNP-ApAGP induces M1 polarization in M0 macrophages, enhances the pro-inflammatory activity of the M1 phenotype, and can also repolarize M2 macrophages into the M1 phenotype. Therefore, SNP-ApAGP could be used for treating various infectious diseases and cancers where repolarization of M2 macrophages may be required to cure the disease.
Collapse
Affiliation(s)
- Mamilla R Charan Raja
- Medicinal Chemistry and Immunology Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur - 613 401, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | |
Collapse
|